Advertisement

Introduction

  • Bao-Lin Zhang
  • Qing-Long Han
  • Xian-Ming Zhang
  • Gong-You Tang
Chapter

Abstract

Offshore platforms are extensively used to explore, drill, produce, storage, and transport ocean oil and/or gas resources in different depths. There are several types of offshore platforms, such as self-elevating platforms, gravity platforms, steel jacket platforms, tension leg platforms (TLPs), articulated leg platforms, guyed tower platforms, spar platforms, floating production systems, and very large floating structures. These platforms can be divided into fixed-bottom platforms and buoyant platforms, which have their own particular purposes and different configurations. To meet an increasing demand for marine sources of energy and minerals, in the past several decades, a lot of research effort has been made on offshore platforms. The related investigations are focused mainly on structure design and monitoring, damage detection, fatigue analysis and reliability assessment, mathematical modeling, and analysis of structures. Specifically, offshore platforms, which are located in a very tough ocean environment over a long period of time, are inevitably affected by environmental loading, such as waves, winds, ice, currents, flow, and earthquakes [1, 2]. The environmental loading may lead to excessive vibration of offshore platforms, thereby causing failure of deck facilities, fatigue failure of structures, inefficiency of operation, and even discomfort of crews. Note that reduction of vibration amplitude of an offshore platform by 15% can extend service life over two times and can result in decreasing expenditure on maintenance and inspection of structures [3]. Therefore, it is of great significance to explore proper ways to reduce different types of vibrations of offshore platforms, and comprehensive surveys of vibration control for offshore structures are provided by Kandasamy et al. [4] and Zhang et al. [5].

References

  1. 1.
    Wilson, J.F. (ed.): Dynamics of Offshore Structures. Wiley, Chichester (2002)Google Scholar
  2. 2.
    Hirdaris, S.E., Bai, W., Dessi, D., et al.: Loads for use in the design of ships and offshore structures. Ocean Eng. 78, 131–174 (2014)CrossRefGoogle Scholar
  3. 3.
    Ou, J., Long, X., Li, Q.S., et al.: Vibration control of steel jacket offshore platform structures with damping isolation systems. Eng. Struct. 29(7), 1525–1538 (2007)CrossRefGoogle Scholar
  4. 4.
    Kandasamy, R., Cui, F., Townsend, N., et al.: A review of vibration control methods for marine offshore structures. Ocean Eng. 127, 279–297 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M.: Recent advances in vibration control of offshore platforms. Nonlinear Dyn. 89(2), 755–771 (2017)CrossRefGoogle Scholar
  6. 6.
    Soong, T.T., Dargush, G.F. (eds.): Passive Energy Dissipation Systems in Structural Engineering. Wiley, Buffalo (1997)Google Scholar
  7. 7.
    Yao, J.T.P.: Concept of structural control. J. Struct. Div. 98(7), 1567–1574 (1972)Google Scholar
  8. 8.
    Korkmaz, S.: A review of active structural control: challenges for engineering informatics. Comput. Struct. 89(23–24), 2113–2132 (2011)CrossRefGoogle Scholar
  9. 9.
    Lee, H.H.: Stochastic analysis for offshore structures with added mechanical dampers. Ocean Eng. 24(5), 817–834 (1997)CrossRefGoogle Scholar
  10. 10.
    Li, H., Wang, S., Ji, C.: Semi-active control of wave-induced vibration for offshore platforms by use of MR damper. China Ocean Eng. 16(1), 33–40 (2002)CrossRefGoogle Scholar
  11. 11.
    Abdel-Rohman, M.: Structural control of a steel jacket platform. Struct. Eng. Mech. 4(2), 125–138 (1996)CrossRefGoogle Scholar
  12. 12.
    Li, H.-N., He, X.-Y., Huo, L.-S.: Seismic response control of offshore platform structures with shape memory alloy Dampers. China Ocean Eng. 19(2), 185–194 (2005)Google Scholar
  13. 13.
    Patil, K.C., Jangid, R.S.: Passive control of offshore jacket platforms. Ocean Eng. 32, 1933–1949 (2005)CrossRefGoogle Scholar
  14. 14.
    Golafshani, A.A., Gholizad, A.: Friction damper for vibration control in offshore steel jacket platforms. J. Constr. Steel Res. J. Constr. Steel Res. 65(1), 180–187 (2009)CrossRefGoogle Scholar
  15. 15.
    Moharrami, M., Tootkaboni, M.: Reducing response of offshore platforms to wave loads using hydrodynamic buoyant mass dampers. Eng. Struct. 81, 162–174 (2014)CrossRefGoogle Scholar
  16. 16.
    Monir, H.S., Nomani, H.: Application of lead rubber isolation systems in the offshore structures. In: Proceedings of the International MultiConference of Engineering and Computer Scientists, Hong Kong, pp. 1523–1527 (2011)Google Scholar
  17. 17.
    Liu, X., Li, G., Yue, Q., et al.: Acceleration-oriented design optimization of ice-resistant jacket platforms in the Bohai Gulf. Ocean Eng. 36(17–18), 1295–1302 (2009)CrossRefGoogle Scholar
  18. 18.
    Wang, S., Yue, Q., Zhang, D.: Ice-induced non-structure vibration reduction of jacket platforms with isolation cone system. Ocean Eng. 70(15), 118–123 (2013)CrossRefGoogle Scholar
  19. 19.
    Kareem, A.: Mitigation of wind induced motion of tall buildings. J. Wind Eng. Ind. Aerod. 11(1–3), 273–284 (1983)CrossRefGoogle Scholar
  20. 20.
    Alves, R.M., Batista, R.C.: Active/passive control of heave motion for TLP type of offshore platforms. In: Proceedings of the International Offshore and Polar Engineering Conference, Brest, France, pp. 332–338 (1999)Google Scholar
  21. 21.
    Wang, S., Li, H., Ji, C., et al.: Energy analysis for TMD-structure systems subjected to impact loading. China Ocean Eng. 16(3), 301–310 (2002)Google Scholar
  22. 22.
    Chandrasekaran, S., Bhaskar K., Lino, H., et al.: Dynamic response behaviour of multi-legged articulated tower with & without TMD. In: Proceedings of the International Conference on Marine Technology, Dhaka, Bangladesh. pp. 131–136 (2010)Google Scholar
  23. 23.
    Yue, Q., Zhang, L., Zhang, W., et al.: Mitigating ice-induced jacket platform vibrations utilizing a TMD system. Cold Reg. Sci. Technol. 56(2–3), 84–89 (2009)CrossRefGoogle Scholar
  24. 24.
    Abe, M., Igusa, T.: Tuned mass dampers for structures with closely spaced natural frequencies. Earthq. Eng. Struct. Dyn. 24, 247–261 (1995)CrossRefGoogle Scholar
  25. 25.
    Taflanidis, A.A., Angelides, D.C., Scruggs, J.T.: Robust design optimization of mass dampers for control of tension leg platforms. In: Proceedings of the International Offshore and Polar Engineering Conference, Vancouver, Canada, pp. 92–99 (2008)Google Scholar
  26. 26.
    Lu, J., Mei, N., Li, Y., et al.: Vibration control of multi-tuned mass dampers for an offshore oil platfrom. China Ocean Eng. 16(3), 321–328 (2002)Google Scholar
  27. 27.
    Taflanidis, A.A., Angelides, D.C., Scruggs, J.T.: Simulation-based robust design of mass dampers for response mitigation of tension leg platforms. Eng. Struct. 31(4), 847–857 (2009)CrossRefGoogle Scholar
  28. 28.
    Chandrasekaran, S., Kumar, D., Ramanathan, R.: Dynamic response of tension leg platform with tuned mass dampers. J. Naval Architect. Mar. Eng. 10(2), 1813–8235 (2013)CrossRefGoogle Scholar
  29. 29.
    Ma, R., Wang, J., Zhao, D.: Simulation of vibration control of offshore platforms under earthquake loadings. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Berlin, Germany, pp. 597–601 (2008)Google Scholar
  30. 30.
    Zhao, D., Cai, D.M., Ma, R.J.: Vibration control of offshore platforms using METMD system under the random ocean wave forces. In: Proceedings of the Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium, Dalian, China, pp. 60–65 (2006)Google Scholar
  31. 31.
    Golafshani, A.A., Gholizad, A.: Passive devices for wave induced vibration control in offshore steel jacket platforms. Trans. A Civ. Eng. 16(6), 443–456 (2009)Google Scholar
  32. 32.
    Jafarabad, A., Kashani, M., Parvar, M.R.A., et al.: Hybrid damping systems in offshore jacket platforms with float-over deck. J. Constr. Steel Res. 98, 178–187 (2014)CrossRefGoogle Scholar
  33. 33.
    Ma, R., Zhang, H., Zhao, D.: Study on the anti-vibration devices for a model jacket platform. Mar. Struct. 23(4), 434–443 (2010)CrossRefGoogle Scholar
  34. 34.
    Veḷičko, J., Gaile L.: Overview of tuned liquid dampers and possible ways of oscillation damping properties improvement. In: Proceedings of the International Scientific and Practical Conference on Environment, Technology, Resources, Rezekne, Latvia, pp. 233–238 (2015)Google Scholar
  35. 35.
    Vandiver, J.K., Mitome, S.: Effect of liquid storage tanks on the dynamic response of offshore platforms. Appl. Ocean Res. 1(2), 67–74 (1979)CrossRefGoogle Scholar
  36. 36.
    Li, H., Ma, B.: Seismic response reduction for fixed offshore platform by tuned liquid damper. China Ocean Eng. 11(2), 119–125 (1997)Google Scholar
  37. 37.
    Chen, X., Wang, L., Xu, J.: TLD technique for reducing ice-induced vibration on platforms. J. Cold Reg. Eng. 13(3), 139–152 (1999)CrossRefGoogle Scholar
  38. 38.
    Jin, Q., Li, X., Sun, N., et al.: Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform. Mar. Struct. 20(4), 238–254 (2007)CrossRefGoogle Scholar
  39. 39.
    Spillane, M.W., Rijken, O.R., Leverette S.J.: Vibration absorbers for deep water TLP’s. In: Proceedings of the International Offshore and Polar Engineering Conference, Lisbon, Portugal, pp. 210–217 (2007)Google Scholar
  40. 41.
    Rijken, O., Spillane, M., Leverette, S.J.: Vibration absorber technology and conceptual design of vibration absorber for TLP in ultradeep water. In: Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, pp. 629–638 (2010)Google Scholar
  41. 42.
    Sakai, F., Takaeda, S., Tamaki, T.: Tuned liquid column damper-new type device for suppression of building vibrations. In: Proceedings of the International Conference on Highrise Buildings, Nanjing, China, pp. 926–931 (1989)Google Scholar
  42. 43.
    Chaiviriyawong, P., Webster, W.C., Pinkaew, T., et al.: Simulation of characteristics of tuned liquid column damper using a potential-flow method. Eng. Struct. 29(1), 132–144 (2007)CrossRefGoogle Scholar
  43. 44.
    Lee, H.H., Wong, S.-H., Lee, R.-S.: Response mitigation on the offshore floating platform system with tuned liquid column damper. Ocean Eng. 33(8–9), 1118–1142 (2006)CrossRefGoogle Scholar
  44. 45.
    Huo, L., Li, H.: Torsionally coupled response control of offshore platform structures using Circular Tuned Liquid Column Dampers. China Ocean Eng. 18(2), 173–183 (2004)Google Scholar
  45. 46.
    Al-Saif, K.A., Aldakkan, K.A., Foda, M.A.: Modified liquid column damper for vibration control of structures. Int. J. Mech. Sci. 53(7), 505–512 (2011)CrossRefGoogle Scholar
  46. 47.
    Chatterjee, T., Chakraborty, S.: Vibration mitigation of structures subjected to random wave forces by liquid column dampers. Ocean Eng. 87(1), 151–161 (2014)CrossRefGoogle Scholar
  47. 48.
    Lee, H.H., Juang, H.H.: Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD. Smart Struct. Syst. 9(1), 71–104 (2012)CrossRefGoogle Scholar
  48. 49.
    Mousavi, S.A., Zahrai, S.M., Bargi, K.: Optimum geometry of tuned liquid column-gas damper for control of offshore jacket platform vibrations under seismic excitation. Earthq. Eng. Eng. Vib. 11(4), 579–592 (2012)CrossRefGoogle Scholar
  49. 50.
    Mousavi, S.A., Bargi, K., Zahrai, S.M. Optimum parameters of tuned liquid column-gas damper for mitigation of seismic-induced vibrations of offshore jacket platforms. Struct. Control. Health Monit. 20(3), 422–444 (2013)CrossRefGoogle Scholar
  50. 51.
    Hochrainer, M.J., Ziegler, F.: Control of tall building vibrations by sealed tuned liquid column dampers. Struct. Control. Health Monit. 13(6), 980–1002 (2006)CrossRefGoogle Scholar
  51. 52.
    Ziegler, F.: Special design of tuned liquid column-gas dampers for the control of spatial structural vibrations. Acta Mech. 201(1), 249–267 (2008)zbMATHCrossRefGoogle Scholar
  52. 53.
    Zeng, X., Yu, Y., Zhang, L., et al.: A new energy-absorbing device for motion suppression in deep-sea floating platforms. Energies 8(1), 111–132 (2015)CrossRefGoogle Scholar
  53. 54.
    Pinkaew, T., Fujino, Y.: Effectiveness of semi-active tuned mass dampers under harmonic excitation. Eng. Struct. 23(7), 850–856 (2001)CrossRefGoogle Scholar
  54. 55.
    Spencer, B.F. Jr, Dyke, S.J., Sain, M.K., et al.: Phenomenological model of a magnetorheological damper. J. Eng. Mech. 123(3), 230–238 (1997)CrossRefGoogle Scholar
  55. 56.
    Karkoub, M., Lamont, L.A., Chaar, L.E.: Design of a test rig for vibration control of oil platforms using Magneto-Rheological Dampers. J. Offshore Mech. Arct. Eng. 133(4), 041302 (2011). https://doi.org/10.1115/1.4003358 CrossRefGoogle Scholar
  56. 57.
    Sarrafan, A., Zareh, S.H., Khayyat, A.A., et al.: Performance of an offshore platform with MR dampers subjected to wave. In: Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, pp. 242–247 (2011)Google Scholar
  57. 58.
    Ji, C., Yin, Q.: Study on a fuzzy MR damper vibration control strategy for offshore platforms. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, San Diego, USA, pp. 363–368 (2007)Google Scholar
  58. 59.
    Ji, C., Chen, M., Li S.: Vibration control of jacekt platforms with magnetorheological damper and experimental validation. High Technol. Lett. 16(2), 189–193 (2010)Google Scholar
  59. 60.
    Wu, B., Shi, P., Wang, Q., et al.: Performance of an offshore platform with MR dampers subjected to ice and earthquake. Struct. Control Health Monit. 18(6), 682–697 (2011)CrossRefGoogle Scholar
  60. 61.
    Wang, S.-Q., Li, N.: Semi-active vibration control for offshore platforms based on LQG method. J. Mar. Sci. Technol. 21(5), 562–568 (2013)Google Scholar
  61. 62.
    Sarrafan, A., Zareh, S.H., Khayyat, A.A.A., et al.: Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers. J. Mech. Sci. Technol. 26(4), 1179–1196 (2012)CrossRefGoogle Scholar
  62. 63.
    Taghikhany, T., Ariana, Sh., Mohammadzadeh, R., et al.: The effect of semi-active controller in Sirri jacket seismic vibration control under Kobe earthquake. Int. J. Mar. Sci. Eng. 3(2), 77–84 (2013)Google Scholar
  63. 64.
    Fischer, F.J., Liapis, S.I., Kallinderis, Y.: Mitigation of current-driven, vortex-induced vibrations of a spar platform via “SMART” thrusters. J. Offshore Mech. Arct. Eng. 126(1), 96–104 (2004)CrossRefGoogle Scholar
  64. 65.
    Zribi, M., Almutairi, N., Abdel-Rohman, M., et al.: Nonlinear and robust control schemes for offshore steel jacket platforms. Nonlinear Dyn. 35(1), 61–80 (2004)zbMATHCrossRefGoogle Scholar
  65. 66.
    Zhang, B.-L., Hu, Y.-H., Tang, G.-Y.: Stabilization control for offshore steel jacket platforms with actuator time-delays. Nonlinear Dyn. 70(2), 1593–1603 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 67.
    Suhardjo, J., Kareem, A.: Structural control of offshore platforms. In: Proceedings of the International Offshore and Polar Engineering Conference, Honolulu, USA, pp. 416–424 (1997)Google Scholar
  67. 69.
    Yamamoto, I., Matsuura, M., Yamaguchi, Y., et al.: Dynamic positioning system based on nonlinear programming for offshore platforms. In: Proceedings of the International Offshore and Polar Engineering Conference, Honolulu, USA, pp. 632–640 (1997)Google Scholar
  68. 70.
    Suhardjo, J., Kareem, A.: Feedback-feedforward control of offshore platforms under random waves. Earthq. Eng. Struct. Dyn. 30, 213–235 (2001)CrossRefGoogle Scholar
  69. 71.
    Kawano, K.: Active control effects on dynamic response of offshore structures. In: Proceedings of the International Offshore and Polar Engineering Conference, Singapore, pp. 494–498 (1993)Google Scholar
  70. 72.
    Terro, M.J., Mahmoud, M.S., Abdel-Rohman, M.: Multi-loop feedback control of offshore steel jacket platforms. Comput. Struct. 70(2), 185–202 (1999)zbMATHCrossRefGoogle Scholar
  71. 73.
    Mahadik, A.S., Jangid, R.S.: Active control of offshore jacket platforms. Int. Shipbuild. Progr. 50(4), 277–295 (2003)Google Scholar
  72. 74.
    Luo, M., Zhu, W.Q.: Nonlinear stochastic optimal control of offshore platforms under wave loading. J. Sound Vib. 296(4–5), 734–745 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 75.
    Suneja, B.P., Datta, T.K.: Active control of ALP with improved performance function. Ocean Eng. 25(10), 817–835 (1998)CrossRefGoogle Scholar
  74. 76.
    Yoshida, K., Suzuki, H., Nam, D.: Active control of coupled dynamic response of TLP hull and tendon. In: Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, pp. 98–104 (1994)Google Scholar
  75. 77.
    Ahmad, S.K., Ahmad, S.: Active control of non-linearly coupled TLP response under wind and wave environments. Comput. Struct. 72(6), 735–747 (1999)zbMATHCrossRefGoogle Scholar
  76. 78.
    Alves, R.M., Battista, R.C., Albrecht, C.H.: Active control for enhancing fatigue life of TLP platform and tethers. In: Proceedings of the International Congress of Mechanical Engineering, Sao Paulo, Brazil (2003)Google Scholar
  77. 79.
    Li, H.-J., Hu, S.-L., Jakubiak, C.: H 2 active vibration control for offshore platform subjected to wave loading. J. Sound Vib. 263(4), 709–724 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 80.
    Wang, W., Tang, G.-Y.: Feedback and feedforward optimal control for offshore jacket platforms. China Ocean Eng. 18(4), 515–526 (2004)Google Scholar
  79. 81.
    Ma, H., Tang, G.-Y., Zhao, Y.-D.: Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Eng. 33(8–9), 1105–1117 (2006)CrossRefGoogle Scholar
  80. 82.
    Ma, H., Tang, G.-Y., Hu, W.: Feedforward and feedback optimal control with memory for offshore platforms under irregular wave forces. J. Sound Vib. 328(4–5), 369–381 (2009)CrossRefGoogle Scholar
  81. 83.
    Zhang, B.-L., Liu, Y.-J., Han, Q.-L., et al.: Optimal tracking control with feedforward compensation for offshore steel jacket platforms with active mass damper mechanisms. J. Vib. Control 22(3), 695–709 (2016)MathSciNetCrossRefGoogle Scholar
  82. 84.
    Zhang, B.-L., Liu, Y.-J., Ma, H., et al.: Discrete feedforward and feedback optimal tracking control for offshore steel jacket platforms. Ocean Eng. 91, 371–378 (2014)CrossRefGoogle Scholar
  83. 85.
    Zhang, B.-L., Feng, A.-M., Li, J.: Observer-based optimal fault-tolerant control for offshore platforms. Comput. Electr. Eng. 40(7), 2204–2215 (2014)CrossRefGoogle Scholar
  84. 86.
    Li, H., Hu, S.-L.J.: Optimal active control of wave-induced vibration for offshore platform. China Ocean Eng. 15(1), 1–14 (2001)CrossRefGoogle Scholar
  85. 87.
    Ji, C., Li, H., Wang, S.: Optimal vibration control strategy for offshore platforms. In: Proceedings of the International Offshore and Polar Engineering Conference, Kitakyushu, Japan, pp. 91–96 (2002)Google Scholar
  86. 88.
    Yang, J.S.: Robust mixed H 2H active control for offshore steel jacket platform. Nonlinear Dyn. 78(2), 1503–1514 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 89.
    Zhang, B.-L., Tang, G.-Y.: Active vibration H control of offshore steel jacket platforms using delayed feedback. J. Sound Vib. 332(22), 5662–5677 (2013)CrossRefGoogle Scholar
  88. 90.
    Zhang, B.-L., Ma, L., Han, Q.-L.: Sliding mode H control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. Real World Appl. 14(1), 163–178 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 91.
    Zhang, B.-L., Huang, Z.-W., Han, Q.-L.: Delayed non-fragile H control for offshore steel jacket platforms. J. Vib. Control 21(5), 959–974 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 92.
    Zhou, Y.-J., Zhao, D.-Y.: Neural network-based active control for offshore platforms. China Ocean Eng. 17(3), 461–468 (2003)MathSciNetCrossRefGoogle Scholar
  91. 93.
    Chang, S., Kim, D., Chang, C., et al.: Active response control of an offshore structure under wave loads using a modified probabilistic neural network. J. Mar. Sci. Technol. 14(2), 240–247 (2009)CrossRefGoogle Scholar
  92. 94.
    Kim, D.H.: Neuro-control of fixed offshore structures under earthquake. Eng. Struct. 31(2), 517–522 (2009)CrossRefGoogle Scholar
  93. 95.
    Kim, D.H.: Application of lattice probabilistic neural network for active response control of offshore structures. Struct. Eng. Mech. 31(2), 153–162 (2009)CrossRefGoogle Scholar
  94. 96.
    Cui, H., Hong, M.: Adaptive inverse control of offshore jacket platform based on grey prediction. In: Proceedings of the International Conference on Digital Manufacturing and Automation, Zhangjiajie, China, pp. 150–154 (2011)Google Scholar
  95. 97.
    Li, X., Yu, X., Han, Q.-L.: Stability analysis of second-order sliding mode control systems with input-delay using Poincare map. IEEE Trans. Autom. Control 58(9), 2410–2415 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 98.
    Zhang, B.-L., Tang, G.-Y., Ma, H.: Optimal sliding mode control with specified decay rate for offshore steel jacket platforms. China Ocean Eng. 24(3), 443–452 (2010)Google Scholar
  97. 99.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M., et al.: Integral sliding mode control for offshore steel jacket platforms. J. Sound Vib. 331(14), 3271–3285 (2012)CrossRefGoogle Scholar
  98. 100.
    Zhang, X.-M., Han, Q.-L., Han, D.-S.: Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. J. Sound Vib. 330(16), 3883–3900 (2011)CrossRefGoogle Scholar
  99. 101.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M., et al.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Contr. Syst. Technol. 22(5), 1769–1783 (2014)CrossRefGoogle Scholar
  100. 102.
    Nourisola and Ahmadi Nourisola, H., Ahmadi, B.: Robust adaptive sliding mode control based on wavelet kernel principal component for offshore steel jacket platforms subject to nonlinear wave-induced force. J. Vib. Control (2014). https://doi.org/10.1177/1077546314553319
  101. 103.
    Nourisola, H., Ahmadi, B., Tavakoli, S.: Delayed adaptive output feedback sliding mode control for offshore platforms subject to nonlinear wave-induced force. Ocean Eng. 104, 1–9 (2015)CrossRefGoogle Scholar
  102. 104.
    Robinett, R.D., Petterson, B.J., Fahrenholtz, J.C.: Lag-stabilized force feedback damping. J. Intell. Robot. Syst. 21(3), 277–285 (1998)zbMATHCrossRefGoogle Scholar
  103. 106.
    Zhang, D., Han, Q.-L., Jia, X.-C.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by non-delayed output feedback controllers. IEEE Trans. Cybern. 45(8), 1511–1524 (2015)CrossRefGoogle Scholar
  104. 107.
    Zhang, B.-L., Han, Q.-L.: Robust sliding mode H control using time-varying delayed states for offshore steel jacket platforms. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, pp. 1–6 (2013)Google Scholar
  105. 108.
    Zhang, B.-L., Han, Q.-L., Huang, Z.-W.: Pure delayed non-fragile control for offshore steel jacket platforms subject to non-linear self-excited wave force. Nonlinear Dyn. 77(3), 491–502 (2014)zbMATHCrossRefGoogle Scholar
  106. 109.
    Sakthivel, R., Selvaraj, P., Mathiyalagan, K., et al.: Robust fault-tolerant H control for offshore steel jacket platforms via sampled-data approach. J. Franklin Ins. 352(6), 2259–2279 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 110.
    Sakthivel, R., Santra, S., Mathiyalagan, K., et al.: Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. Nonlinear Dyn. 78(2), 1109–1123 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 113.
    Huang, S., Cai, M., Xiang, Z.: Robust sampled-data H control for offshore platforms subject to irregular wave forces and actuator saturation. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3404-6
  109. 114.
    Peng, C., Han, Q.-L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2013)CrossRefGoogle Scholar
  110. 119.
    Zhang, X.-M., Han, Q.-L., Zhang, B.-L.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Informat. 13(1), 4–16 (2017)MathSciNetCrossRefGoogle Scholar
  111. 120.
    Zhang, B.-L., Han, Q.-L.: Network-based modelling and active control for offshore steel jacket platforms with TMD mechanisms. J. Sound Vib. 333(25), 6796–6814 (2014)CrossRefGoogle Scholar
  112. 121.
    Jiang, X., Han, Q.-L.: On H control for linear systems with interval time-varying delay. Automatica 41(12), 2099–2106 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 122.
    Jiang, X., Han, Q.-L.: Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica 42(6), 1059–1065 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 123.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M.: Event-triggered H reliable control for offshore structures in network environments. J. Sound Vib. 368, 1–21 (2016)CrossRefGoogle Scholar
  115. 124.
    Yue, D., Tian, E., Han, Q.-L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Automa. Control 58(2), 475–481 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 125.
    Peng, C., Han, Q.-L.: A novel event-triggered transmission scheme and L 2 control co-design for sampled-data control systems. IEEE Trans. Automa. Control 58(10), 2620–2626 (2013)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bao-Lin Zhang
    • 1
  • Qing-Long Han
    • 2
  • Xian-Ming Zhang
    • 2
  • Gong-You Tang
    • 3
  1. 1.China Jiliang UniversityHangzhouChina
  2. 2.Swinburne University of TechnologyMelbourneAustralia
  3. 3.Ocean University of ChinaQingdaoChina

Personalised recommendations