Advertisement

Aspartoacylase Deficiency (Canavan Disease, N-Acetylaspartic Aciduria)

  • Jörn Oliver SassEmail author
  • Ina Knerr
Chapter

Abstract

CD is a rare, autosomal recessive neurometabolic disorder with often devastating clinical consequences. It typically presents in early infancy. Clinical symptoms and MRI-based findings are chronic neurological deterioration with irritability and severe global developmental delay, loss of early milestones, macrocephaly, and seizures together with white matter abnormalities in the brain (“leukodystrophy”). CD is biochemically characterized by a deficiency of aspartoacylase along with the accumulation of NAA in the brain and in body fluids, particularly in urine. In the majority of CD patients, the disease leads to early death. As there is no cure for this condition, management of affected children and their families is symptom orientated and supportive and includes a multidisciplinary medical team.

Keywords

Aminoacylase Neurometabolic disease Organic aciduria Enzyme activity assays Magnetic resonance imaging (MRI) 

References

  1. Adachi M, Torii J, Schneck L, Volk BW (1972) Electron microscopic and enzyme histochemical studies of the cerebellum in spongy degeneration (van Bogaert and Bertrand type). Acta Neuropathol 20:22–31CrossRefGoogle Scholar
  2. Assadi M, Janson C, Wang DJ, Goldfarb O, Suri N, Bilaniuk L, Leone P (2010) Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol 14:354–359CrossRefGoogle Scholar
  3. Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953CrossRefGoogle Scholar
  4. Burlina AP, Ferrari V, Divry P, Gradowska W, Jakobs C, Bennett MJ, Sewell AC, Dionisi-Vici C, Burlina AB (1999) N-acetylaspartylglutamate in Canavan disease: an adverse effector? Eur J Pediatr 158:406–409CrossRefGoogle Scholar
  5. Canavan MM (1931) Schilder’s encephalitis periaxialis diffusa: report of a case in a child aged sixteen and one-half months. Arch Neur Psych 25:299–308CrossRefGoogle Scholar
  6. Guo F, Bannerman P, Mills Ko E, Miers L, Xu J, Burns T, Li S, Freeman E, McDonough JA, Pleasure D (2015) Ablating N-acetylaspartate prevents leukodystrophy in a Canavan disease model. Ann Neurol 77:884–888CrossRefGoogle Scholar
  7. Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123Google Scholar
  8. Kölker S, Struys EA, van der Knaap M, Jacobs C (2014) Cerebral organic Acidurias. In: Blau N et al (eds) Physician’s guide to the diagnosis, treatment and follow-up of inherited metabolic diseases. Springer, Berlin, pp 143–156CrossRefGoogle Scholar
  9. Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 87:3415–3427CrossRefGoogle Scholar
  10. Lienhard U, Sass JO (2011) Canavan disease: a neurometabolic disease caused by aspartoacylase deficiency. J Pediatr Sci 3(1):e7Google Scholar
  11. Maier H, Wang-Eckhardt L, Hartmann D, Gieselmann V, Eckhardt M (2015) N-Acetylaspartate synthase deficiency corrects the myelin phenotype in a canavan disease mouse model but does not affect survival time. J Neurosci 35:14501–14516CrossRefGoogle Scholar
  12. Mendes MI, Smith DE, Pop A, Lennertz P, Ojeda MR, Kanhai WA, van Dooren SJ, Anikster Y, Barić I, Boelen C, Campistol J, de Boer L, Kariminejad A, Kayserili H, Roubertie A, Verbruggen KT, Vianey-Saban C, Williams M, Salomons GS (2017) Clinically distinct phenotypes of Canavan disease correlate with residual aspartoacylase enzyme activity. Hum Mutat 38:524–531CrossRefGoogle Scholar
  13. Sistermans EA, de Coo RF, van Beerendonk HM, Poll-The BT, Kleijer WJ, van Oost BA (2000) Mutation detection in the aspartoacylase gene in 17 patients with Canavan disease: four new mutations in the non-Jewish population. Eur J Hum Genet 8:557–560CrossRefGoogle Scholar
  14. Sohn J, Bannerman P, Guo F, Burns T, Miers L, Croteau C, Singhal NK, McDonough JA, Pleasure D (2017) Suppressing N-Acetyl-L-Aspartate synthesis prevents loss of neurons in a murine model of Canavan Leukodystrophy. J Neurosci 37:413–421CrossRefGoogle Scholar
  15. Sommer A, Sass JO (2012) Expression of aspartoacylase (ASPA) and Canavan disease. Gene 505:206–210CrossRefGoogle Scholar
  16. van Bogaert L, Bertrand I (1949) Sur une idiotie familiale avec dégénérescenece spongieuse de neurone (note preliminaire). Acta Neurol Belg 49:572–587Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Natural Sciences, Inborn Errors of MetabolismBonn-Rhein-Sieg University of Applied SciencesRheinbachGermany
  2. 2.National Centre for Inherited Metabolic DisordersTemple Street Children’s University HospitalDublinIreland

Personalised recommendations