Advertisement

Cherubism

  • Noriaki Shoji
  • Ernst J. Reichenberger
  • Yasuyoshi UekiEmail author
Chapter

Abstract

A 21-year-old female visited our hospital with cosmetic concerns regarding her expanded mandible. Although she had noticed some facial deformity since she was 6 years old, she did not seek medical attention. When she was around 20 years old, she became more concerned about the noticeable gradual expansion of the mandible. There was no family history of enlarged mandibles. Physical examination revealed a bilateral hard bony swelling of the face and a right exophthalmos. There were no signs of pain or paralysis in the orofacial area nor abnormalities in visual field and acuity. After 2 months of her initial visit, the patient underwent plastic surgery to correct cosmetic deformities by removing bilateral fibrous lesions of the mandible and maxilla. Hematoxylin and eosin (H&E) staining of surgical specimen revealed fibrous stromal tissue that contained a large number of multinucleated giant cells. Sequencing of genomic DNA from blood cells detected a heterozygous missense mutation in the gene coding for SH3 domain-binding protein 2 (SH3BP2) that causes an amino acid substitution from proline to arginine at amino acid position 418, confirming cherubism.

Keywords

SH3BP2 Autoinflammation Macrophages Osteoclasts Bone destruction 

References

  1. Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, Ostrowski MC, Olsen BR, Glimcher LH (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 118:3775–3789CrossRefGoogle Scholar
  2. Bell SM, Shaw M, Jou YS, Myers RM, Knowles MA (1997) Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer. Genomics 44:163–170CrossRefGoogle Scholar
  3. De Lange J, Van Den Akker HP, Scholtemeijer M (2007) Cherubism treated with calcitonin: report of a case. J Oral Maxillofac Surg 65:1665–1667CrossRefGoogle Scholar
  4. Etoz OA, Dolanmaz D, Gunhan O (2011) Treatment of cherubism with salmon calcitonin: a case report. Eur J Dent 5:486–491PubMedPubMedCentralGoogle Scholar
  5. Guettler S, Larose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R, Sicheri F (2011) Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell 147:1340–1354CrossRefGoogle Scholar
  6. Harris M (1993) Central giant cell granulomas of the jaws regress with calcitonin therapy. Br J Oral Maxillofac Surg 31:89–94CrossRefGoogle Scholar
  7. Hero M, Suomalainen A, Hagstrom J, Stoor P, Kontio R, Alapulli H, Arte S, Toiviainen-Salo S, Lahdenne P, Makitie O (2013) Anti-tumor necrosis factor treatment in cherubism--clinical, radiological and histological findings in two children. Bone 52:347–353CrossRefGoogle Scholar
  8. Imai Y, Kanno K, Moriya T, Kayano S, Seino H, Matsubara Y, Yamada A (2003) A missense mutation in the SH3BP2 gene on chromosome 4p16.3 found in a case of nonfamilial cherubism. Cleft Palate Craniofac J 40:632–638CrossRefGoogle Scholar
  9. Kadlub N, Vazquez MP, Galmiche L, L’hermine AC, Dainese L, Ulinski T, Fauroux B, Pavlov I, Badoual C, Marlin S, Deckert M, Leboulanger N, Berdal A, Descroix V, Picard A, Coudert AE (2015) The calcineurin inhibitor tacrolimus as a new therapy in severe cherubism. J Bone Miner Res 30:878–885CrossRefGoogle Scholar
  10. Lannon DA, Earley MJ (2001) Cherubism and its charlatans. Br J Plast Surg 54:708–711CrossRefGoogle Scholar
  11. Levaot N, Voytyuk O, Dimitriou I, Sircoulomb F, Chandrakumar A, Deckert M, Krzyzanowski PM, Scotter A, Gu S, Janmohamed S, Cong F, Simoncic PD, Ueki Y, La Rose J, Rottapel R (2011) Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 147:1324–1339CrossRefGoogle Scholar
  12. Papadaki ME, Lietman SA, Levine MA, Olsen BR, Kaban LB, Reichenberger EJ (2012) Cherubism: best clinical practice. Orphanet J Rare Dis 7(Suppl 1):S6CrossRefGoogle Scholar
  13. Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA (2012) The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis 7(Suppl 1):S5CrossRefGoogle Scholar
  14. Southgate J, Sarma U, Townend JV, Barron J, Flanagan AM (1998) Study of the cell biology and biochemistry of cherubism. J Clin Pathol 51:831–837CrossRefGoogle Scholar
  15. Ueki Y, Tiziani V, Santanna C, Fukai N, Maulik C, Garfinkle J, Ninomiya C, Doamaral C, Peters H, Habal M, Rhee-Morris L, Doss JB, Kreiborg S, Olsen BR, Reichenberger E (2001) Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet 28:125–126CrossRefGoogle Scholar
  16. Ueki Y, Lin CY, Senoo M, Ebihara T, Agata N, Onji M, Saheki Y, Kawai T, Mukherjee PM, Reichenberger E, Olsen BR (2007) Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell 128:71–83CrossRefGoogle Scholar
  17. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462CrossRefGoogle Scholar
  18. Yoshimoto T, Hayashi T, Kondo T, Kittaka M, Reichenberger EJ, Ueki Y (2018) Second-generation SYK inhibitor entospletinib ameliorates fully established inflammation and bone destruction in the cherubism mouse model. J Bone Miner Res 33(8):1513–1519CrossRefGoogle Scholar
  19. Yoshitaka T, Ishida S, Mukai T, Kittaka M, Reichenberger EJ, Ueki Y (2014a) Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-alpha-induced inflammation and bone loss. J Bone Miner Res 29:1170–1182CrossRefGoogle Scholar
  20. Yoshitaka T, Mukai T, Kittaka M, Alford LM, Masrani S, Ishida S, Yamaguchi K, Yamada M, Mizuno N, Olsen BR, Reichenberger EJ, Ueki Y (2014b) Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Cell Rep 8:1752–1766CrossRefGoogle Scholar
  21. Yoshitaka T, Kittaka M, Ishida S, Mizuno N, Mukai T, Ueki Y (2015) Bone marrow transplantation improves autoinflammation and inflammatory bone loss in SH3BP2 knock-in cherubism mice. Bone 71:201–209CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Noriaki Shoji
    • 1
  • Ernst J. Reichenberger
    • 2
  • Yasuyoshi Ueki
    • 3
    Email author
  1. 1.Division of Oral Diagnosis, Department of Oral Medicine and SurgeryTohoku University Graduate School of DentistrySendaiJapan
  2. 2.Department of Reconstructive Sciences, School of Dental MedicineUConn HealthFarmingtonUSA
  3. 3.Indiana Center for Musculoskeletal Health, Department of Biomedical and Applied Sciences, School of DentistryIndiana UniversityIndianapolisUSA

Personalised recommendations