Advertisement

Achondroplasia

  • Kosei HasegawaEmail author
  • Hiroyuki Tanaka
  • Yoshiki Seino
Chapter

Abstract

A pregnant woman was referred to the obstetrics department at a hospital because her doctor considered that her baby might have some congenital skeletal disorder. Echography of the fetus revealed that the fetal femur growth stopped at 27 weeks of gestational age and that the femur length was very short at 33 weeks (−6.7 SD). The chest of the fetus was hypoplastic. In contrast to her baby’s short limbs and narrow chest, its head was large (+1.9 SD). Cephalopelvic disproportion was suspected. Therefore, her doctor chose to conduct a cesarean section.

Keywords

Short stature Skeletal disorder Sleep apnea Endochondral ossification Chondrocyte 

References

  1. Bartels CF, Bukulmez H, Padayatti P et al (2004) Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75:27–34CrossRefGoogle Scholar
  2. Bellus GA, Hefferon TW, Ortiz De Luna RI et al (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373PubMedPubMedCentralGoogle Scholar
  3. Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892CrossRefGoogle Scholar
  4. Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30:751–771CrossRefGoogle Scholar
  5. Chusho H, Tamura N, Ogawa Y et al (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 98:4016–4021CrossRefGoogle Scholar
  6. Deng C, Wynshaw-Boris A, Zhou F et al (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921CrossRefGoogle Scholar
  7. Garcia S, Dirat B, Tognacci T et al (2013) Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med 5:203ra124PubMedGoogle Scholar
  8. Harada D, Yamanaka Y, Ueda K et al (2009) FGFR3-related dwarfism and cell signaling. J Bone Miner Metab 27:9–15CrossRefGoogle Scholar
  9. Hasegawa K, Fukuhara R, Moriwake T et al (2016) A novel mutation p.Ser348Cys in FGFR3 causes achondroplasia. Am J Med Genet A 170A:1370–1372CrossRefGoogle Scholar
  10. Heuertz S, Le Merrer M, Zabel B et al (2006) Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. Eur J Hum Genet 14:1240–1247CrossRefGoogle Scholar
  11. Horton WA, Hall JG, Hecht JT (2007) Achondroplasia. Lancet 370:162–172CrossRefGoogle Scholar
  12. Ikegawa S, Fukushima Y, Isomura M et al (1995) Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients. Hum Genet 96:309–311CrossRefGoogle Scholar
  13. Jin M, Yu Y, Qi H et al (2012) A novel FGFR3-binding peptide inhibits FGFR3 signaling and reverses the lethal phenotype of mice mimicking human thanatophoric dysplasia. Hum Mol Genet 21:5443–5455CrossRefGoogle Scholar
  14. Jonquoy A, Mugniery E, Benoist-Lasselin C et al (2012) A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model. Hum Mol Genet 21:841–851CrossRefGoogle Scholar
  15. Komla-Ebri D, Dambroise E, Kramer I et al (2016) Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest 126:1871–1884CrossRefGoogle Scholar
  16. Lorget F, Kaci N, Peng J et al (2012) Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet 91:1108–1114CrossRefGoogle Scholar
  17. Makrythanasis P, Temtamy S, Aglan MS et al (2014) A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly. Hum Mutat 35:959–963CrossRefGoogle Scholar
  18. Matsushita M, Kitoh H, Ohkawara B et al (2013) Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One 8:e81569CrossRefGoogle Scholar
  19. Matsushita M, Hasegawa S, Kitoh H et al (2015) Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene. Endocrinology 156:548–554CrossRefGoogle Scholar
  20. Miura K, Kim OH, Lee HR et al (2014) Overgrowth syndrome associated with a gain-of-function mutation of the natriuretic peptide receptor 2 (NPR2) gene. Am J Med Genet A 164A:156–163CrossRefGoogle Scholar
  21. Naski MC, Colvin JS, Coffin JD et al (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988PubMedGoogle Scholar
  22. Rousseau F, Bonaventure J, Legeai-Mallet L et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254CrossRefGoogle Scholar
  23. Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342CrossRefGoogle Scholar
  24. Tachibana K, Suwa S, Nishiyama S, Matsuda I (1997) Height of Japanese achondroplasia patients based on a nationwide investigation. J Pediatr Pract 60:1363–1369 in JapaneseGoogle Scholar
  25. Takagi M, Kouwaki M, Kawase K et al (2015) A novel mutation Ser344Cys in FGFR3 causes achondroplasia with severe platyspondyly. Am J Med Genet A 167A:2851–2854CrossRefGoogle Scholar
  26. Tanaka H, Kubo T, Yamate T et al (1998) Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic–pituitary function, and genotype. Eur J Endocrinol 138:275–280CrossRefGoogle Scholar
  27. Toydemir RM, Brassington AE, Bayrak-Toydemir P et al (2006) A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet 79:935–941CrossRefGoogle Scholar
  28. Ueda K, Yamanaka Y, Harada D et al (2007) PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 41:13–18CrossRefGoogle Scholar
  29. Vasques GA, Amano N, Docko AJ et al (2013) Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J Clin Endocrinol Metab 98:E1636–E1644CrossRefGoogle Scholar
  30. Xie Y, Su N, Jin M et al (2012) Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet 21:3941–3955CrossRefGoogle Scholar
  31. Yamashita A, Morioka M, Kishi H et al (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513:507–511CrossRefGoogle Scholar
  32. Yasoda A, Komatsu Y, Chusho H et al (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86CrossRefGoogle Scholar
  33. Zhang SR, Zhou XQ, Ren X et al (2007) Ser217Cys mutation in the Ig II domain of FGFR3 in a Chinese family with autosomal dominant achondroplasia. Chin Med J 120:1017–1019CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kosei Hasegawa
    • 1
    Email author
  • Hiroyuki Tanaka
    • 2
  • Yoshiki Seino
    • 3
  1. 1.Department of PediatricsOkayama University HospitalOkayamaJapan
  2. 2.Department of PediatricsOkayama Saiseikai General HospitalOkayamaJapan
  3. 3.Department of PediatricsJCHO Osaka HospitalOsakaJapan

Personalised recommendations