Advertisement

Citrin Deficiency

  • Yuan-Zong Song
  • Masahide Yazaki
  • Takeyori Saheki
Chapter

Abstract

Citrin deficiency arises from biallelic mutations in SLC25A13 gene, and can manifest in newborns or infants as neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), in older children as failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD), and in adults as adult-onset citrullinemia type II (CTLN2). The diagnosis of citrin deficiency is based on characteristic biochemical findings and identification of biallelic pathogenic variants in SLC25A13 gene. Lactose-free and medium-chain triglycerides (MCT)-enriched formula and fat-soluble vitamins yield satisfactory outcomes in most NICCD cases. For FTTDCD, besides dietary treatment, sodium pyruvate may improve growth. For CTLN2, liver transplantation is effective, but arginine, sodium pyruvate, and MCT oil may delay the need for liver transplantation.

Keywords

CTLN2 (adult-onset type II citrullinemia) NICCD (neonatal intrahepatic cholestasis caused by citrin deficiency) FTTDCD (failure to thrive and dyslipidemia caused by citrin deficiency) Aspartate-glutamate carrier Malate-aspartate shuttle 

Abbreviations

4-HPL

 4-Hydroxyphenyllactate

4-HPPV

 4-Hydroxyphenylpyruvate

ABC

 ATP-binding cassette

ABCG5/8

ATP-binding cassette, subfamily G, member 5/8

AFP

α-Fetoprotein

Ag

Antigen

AGC

Aspartate-glutamate carrier

ALP

Alkaline phosphatase

ALT

Alanine aminotransferase

ASS

Argininosuccinate synthetase

AST

Aspartate aminotransferase

BSEP

Bile salt export pump

CMV

Cytomegalovirus

CTLN1

Argininosuccinate synthetase deficiency or classical citrullinemia

CTLN2

Adult-onset type II citrullinemia

FTTDCD

Failure to thrive and dyslipidemia caused by citrin deficiency

GC-MS

Gas chromatography-mass spectrometry

GGT

γ-Glutamyltransferase

MCFA

Medium-chain fatty acid

MCT

Medium-chain triglyceride

MRD3

Multidrug-resistant protein 3

MS-MS

Tandem mass spectrometry

NICCD

Neonatal intrahepatic cholestasis caused by citrin deficiency

ORF

Open reading frame

TBA

Total bile acids

Tbil/Dbil

Total bilirubin/direct bilirubin

References

  1. Fukushima K, Yazaki M, Nakamura M et al (2010) Conventional diet therapy for hyperammonemia is risky in the treatment of hepatic encephalopathy associated with citrin deficiency. Intern Med 49:1–20CrossRefGoogle Scholar
  2. Hayasaka K, Numakura C, Toyota K et al (2014) Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1:42–50CrossRefGoogle Scholar
  3. Ikeda S, Yazaki M, Takei Y et al (2001) Type II (adult onset) citrullinemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosug Psychiatr 71:663–670CrossRefGoogle Scholar
  4. Imamura Y, Kobayashi K, Shibatou T et al (2003) Effectiveness of carbohydrate-restrictive diet and arginine granules therapy for adult-onset type II citrullinemia: a case report of siblings showing homozygous SLC25A13 mutation with and without the disease. Hepatol Res 26:68–72CrossRefGoogle Scholar
  5. Kikuchi A, Arai-Ichinoi N, Sakamoto O et al (2012) Simple and rapid genetic testing for citrin deficiency by. Screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 105:553–558CrossRefGoogle Scholar
  6. Kobayashi K, Sinasac DS, Iijima M et al (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22:159–163CrossRefGoogle Scholar
  7. Kobayashi K, Saheki T, Song YZ (2014) Citrin deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) Gene reviews [Internet]. University of Washington, Seattle; 1993–2005 Sept 16Google Scholar
  8. Komatsu M, Yazaki M, Tanaka N et al (2008) Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol 49:810–820CrossRefGoogle Scholar
  9. Komatsu M, Kimura T, Yazaki M et al (2015) Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852:473–481CrossRefGoogle Scholar
  10. Lin WX, Zeng HS, Zhang ZH et al (2016) Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution. Sci Rep 6:29732CrossRefGoogle Scholar
  11. Moriyama M, Li MX, Kobayashi K et al (2006) Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice. J Hepatol 44:930–938CrossRefGoogle Scholar
  12. Mutoh K, Kurokawa K, Kobayashi K, Saheki T (2008) Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis 31(Suppl 2):S343–S347CrossRefGoogle Scholar
  13. Nakamura M, Yazaki M, Kobayashi Y et al (2011) The characteristics of food intake in patients with type II citrullinemia. J Nutr Sci Vitaminol 57:239–245CrossRefGoogle Scholar
  14. Palmieri L, Pardo B, Lasorsa FM et al (2001) Citrin and aralar 1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069CrossRefGoogle Scholar
  15. Saheki T, Kobayashi K (2002) Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47:333–341CrossRefGoogle Scholar
  16. Saheki T, Kobayashi K, Terashi M et al (2008) Reduced carbohydrate intake in citrin-deficient subjects. J Inherit Metab Dis 31:386–394CrossRefGoogle Scholar
  17. Soeda J, Yazaki M, Nakata T et al (2008) Primary liver carcinoma exhibiting dual hepatocellular-biliary epithelial differentiations associated with citrin deficiency: a case report and review of the literature. J Clin Gastroenterol 42:855–860CrossRefGoogle Scholar
  18. Tanaka M, Nishigaki Y, Fuku N et al (2007) Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion 7:399–401CrossRefGoogle Scholar
  19. Thangaratnarajah C, Ruprecht JJ, Kunji ER (2014) Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat Commun 5:5491CrossRefGoogle Scholar
  20. Yazaki M, Takei Y, Kobayashi K et al (2005) Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset type II citrullinemia (CTLN2). Intern Med 44:188–195CrossRefGoogle Scholar
  21. Yazaki M, Kinoshita M, Ogawa S et al (2013) A 73-year-old patient with adult-onset type II citrullinemia successfully treated by sodium pyruvate and arginine. Clin Neurol Neurosurg 115:1542–1545CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuan-Zong Song
    • 1
  • Masahide Yazaki
    • 2
    • 3
  • Takeyori Saheki
    • 4
  1. 1.Department of Pediatrics, The First Affiliated HospitalJinan UniversityGuangzhouChina
  2. 2.Institute for Biomedical SciencesShinshu UniversityMatsumotoJapan
  3. 3.Department of Clinical Laboratory MedicinesShinshu University School of Health SciencesMatsumotoJapan
  4. 4.Department of Hygiene and Health Promotion MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan

Personalised recommendations