Nano-pattern Formation Using Liquid Silicon

  • Tatsuya Shimoda


In this chapter, direct patterning methods for device fabrication are introduced. The first one, described in 8.1, is a method for the area-selective deposition of polysilane patterns in silicon solution, which is based on the principle of Type 4 conversion in Case 2 shown in Fig.  1.1 in Chap.  1. Two kinds of selectivity mechanisms are utilized: one is the difference of molecular forces and the other is a reactive difference. The second method, described in 8.2, is a direct drawing of Si lines using CPS vapor and an electron or ion beam. This is a kind of free writing of three-dimensional Si patterns named focused-ion-beam chemical vapor deposition (FIB-CVD). CPS molecules facilitated the advancement of this method. The third method, described in 8.3, is nanoimprinting of silicon. Well-defined silicon patterns with a high aspect ratio and sharp edges were directly formed by imprinting of liquid silicon. Both dotted and lined patterns whose size ranges from 1 mm to 100 nm were obtained, suggesting that their size could be further reduced.


Area-selective deposition Hamaker constant Polysilane Focused-ion-beam (FIB)-CVD Nanoimprinting 


  1. 1.
    S.M. Sze, Semiconductor Devices: Physics and Technology, Chapter 11 (Wiley, 2008)Google Scholar
  2. 2.
    I. Utke, A. Gölzhäuser, Angew. Chem. Int. Ed. 49, 9328 (2010)CrossRefGoogle Scholar
  3. 3.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Bret, S. Mauron, I. Utke, P. Hoffmann, Microelectron. Engineer. 78, 300 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Matsui, T. Ichihashi, M. Mito, J. Vac. Sci. Technol. B 7, 1182 (1989)CrossRefGoogle Scholar
  6. 6.
    R.R. Kunz, T.M. Mayer, Appl. Phys. Lett. 50, 962 (1987)CrossRefGoogle Scholar
  7. 7.
    R.R. Kunz, T.M. Mayer, J. Vac. Sci. Technol. B 6, 1557 (1988)CrossRefGoogle Scholar
  8. 8.
    L.R. Thompson, J.J. Rocca, K. Emery, P.K. Boyer, G.J. Collins, Appl. Phys. Lett. 43, 777 (1983)CrossRefGoogle Scholar
  9. 9.
    R.J. Young, J. Puretz, J. Vac. Sci. Technol. B 13, 2576 (1995)CrossRefGoogle Scholar
  10. 10.
    F. Hirose, H. Sakamoto, Jpn. J. Appl. Phys. 34, 5904 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Matsui, M. Mito, Appl. Phys. Lett. 53, 1492 (1988)CrossRefGoogle Scholar
  12. 12.
    R. Kawajiri, H. Takagishi, T. Masuda, T. Kaneda, K. Yamazaki, Y. Matsuki, T. Mitani, T. Shimoda, J. Mater. Chem. C 4, 3385 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Masuda, H. Takagishi, K. Yamazaki, T. Shimoda, ACS Appl. Mater. Interfaces 8, 9969 (2016)CrossRefGoogle Scholar
  14. 14.
    S.Y. Chou, Q. Xia, Z. Yu, H. Gao, Appl. Phys. Lett. 67, 3114 (1995)CrossRefGoogle Scholar
  15. 15.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)CrossRefGoogle Scholar
  16. 16.
    P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, J. Vac. Sci. Technol. B 17, 2965 (1999)CrossRefGoogle Scholar
  17. 17.
    F. Hua, Y. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim, Nano Lett. 4, 2467 (2004)CrossRefGoogle Scholar
  18. 18.
    Y. Akita, T. Watanabe, W. Hara, A. Matsuda, M. Yoshimoto, Jpn. J. Appl. Phys. 46, L342 (2007)CrossRefGoogle Scholar
  19. 19.
    K.-J. Byeon, H. Lee, Eur. Phys. J. Appl. Phys. 59, 10001 (2012)CrossRefGoogle Scholar
  20. 20.
    S.Y. Chou, C. Keimel, J. Gu, Nature 417, 835 (2002)CrossRefGoogle Scholar
  21. 21.
    T. Masuda, Y. Matsuki, T. Shimoda, Polymer 53, 2973 (2012)CrossRefGoogle Scholar
  22. 22.
    T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 440, 783 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir 15, 7600 (1999)CrossRefGoogle Scholar
  24. 24.
    D. Beeman, R. Tsu, M.F. Thorpe, Phys. Rev. B 32, 874 (1985)CrossRefGoogle Scholar
  25. 25.
    T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 6603 (2012)CrossRefGoogle Scholar
  26. 26.
    T. Ishidate, K. Inoue, K. Tsuji, S. Minomura, Solid State Commun. 42, 197 (1982)CrossRefGoogle Scholar
  27. 27.
    C.X. Cui, M. Kertesz, Macromolecules 25, 1103 (1992)CrossRefGoogle Scholar
  28. 28.
    B. Albinsson, H. Teramae, H.S. Plitt, L.M. Goss, H. Schmidbaur, J. Michl, J. Phys. Chem. 100, 8681 (1996)CrossRefGoogle Scholar
  29. 29.
    C.X. Cui, A. Karpfen, M. Kertesz, Macromolecules 23, 3302 (1990)CrossRefGoogle Scholar
  30. 30.
    E. Bhattacharya, A.H. Mahan, Appl. Phys. Lett. 52, 1587 (1988)CrossRefGoogle Scholar
  31. 31.
    D.F. Edwards, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985), p. 547CrossRefGoogle Scholar
  32. 32.
    M.L. Huggins, J. Am. Chem. Soc. 75, 4123 (1953)CrossRefGoogle Scholar
  33. 33.
    O. Renner, J. Zemek, Czech. J. Phys. Sect. B 23, 1273 (1973)CrossRefGoogle Scholar
  34. 34.
    K.-m. Yoon, K.-y. Yang, H. Lee, Thin Solid Films 518, 126 (2009)CrossRefGoogle Scholar
  35. 35.
    K.-Y. Yang, K.-M. Yoon, K.-W. Choi, H. Lee, Microelectron. Eng. 86, 2228 (2009)CrossRefGoogle Scholar
  36. 36.
    M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Nano Lett. 7, 2506 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations