Liquid Silicon Family Materials(1): SiO2, CoSi2, and Al

  • Tatsuya Shimoda


In this chapter and Chap.  7, the liquid silicon family of materials (LSFMs) shown in Fig.  4.1 are introduced in detail. In this chapter, three materials, i.e., SiO2, CoSi2, and Al, are introduced as LSFM part-1, while SiC is described in a separated chapter (Chap.  7) as LSFM part-2. This is simply because the contents of SiC are too large to be included in one chapter.

In Sect. 6.1 fabrication of SiO2 as the first example of LSFM is introduced; an SiO2 film with excellent quality can be prepared via oxidation of a polysilane film. After that thin film transistors (TFTs) were fabricated, in which one SiO2 layer (gate insulator/underlayer) of the transistor was formed using solution process. Next the TFTs, in which two SiO2 layers (gate insulator/underlayer) and a channel Si layer were solution processed, are introduced.

In Sect. 6.2, as the second example, formation of a cobalt disilicide (CoSi2) film using CPS and dicobalt octacarbonyl (Co2(CO)8) is introduced. It was demonstrated that a high-quality epitaxial CoSi2 layer was grown on a silicon (100) surface. Its resistivity was as low as 15 μΩcm.

In Sect. 6.3, as the third example, aluminum (Al) metal formation using a liquid precursor ink was described. Of course Al is not Si, but the idea of obtaining solid from a liquid precursor is very similar to that of silicon related materials and Al is one of components needed for a MOS-FET. So I dare to classify this material technology into LSFM. We developed a liquid process for Al metal using triethylamine alane, especially aiming to realize a selective deposition method.


Cyclopentasilane (CPS) SiO2 Cobalt disilicide Al-pattern selective deposition Triethylamine alane (AlH3NEt3) 


  1. 1.
    H. Tanaka, T. Aoki, I. Yudasaka, T. Shimoda, M. Furusawa, H. Iwasawa, D. Wang, Y. Matsuki, in SID Symposium Digest of Technical Papers (2007), p. 188Google Scholar
  2. 2.
    C. Chatgilialoglu, A. Guerrini, M. Lucarini, G.F. Pedulli, P. Carrozza, G.D. Roit, V. Borzatta, V. Lucchini, Organometallics 17, 2169 (1998)CrossRefGoogle Scholar
  3. 3.
    S. M. Sze, Semiconductor Devices: Physics and Technology, Vol. Chapter 11 (Wiley, New York, 2008)Google Scholar
  4. 4.
    T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 440, 783 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Tanaka, Y. Matsuki, T. Shimoda, H. Iwasawa, T. Aoki, I. Yudasaka, D. Wang, M. Miyasaka, M. Furusawa, AM-FPD 2006, 27 (2006)Google Scholar
  6. 6.
    R. Kawajiri, H. Takagishi, Y. Matsuki, T. Mitani, T. Shimoda, Appl. Phys. Exp. 7, 055503 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Kikkawa, K. Inoue, K. Imai, Silicide Technology for Integrated Circuits (The Institution of Electrical Engineers, London, 2004)Google Scholar
  8. 8.
    H.S. Rhee, T.W. Jang, B.T. Ahn, Appl. Phys. Lett. 74, 1003 (1999)CrossRefGoogle Scholar
  9. 9.
    A.J. Chalk, J.F. Harrod, J. Am. Chem. Soc. 87, 1133 (1965)CrossRefGoogle Scholar
  10. 10.
    A. Berenbaum, F. Jäkle, A.J. Lough, I. Manners, Organometallics 20, 834 (2001)CrossRefGoogle Scholar
  11. 11.
    J.W. Cable, R.S. Nyholm, R.K. Sheline, J. Am. Chem. Soc. 76, 3373 (1954)CrossRefGoogle Scholar
  12. 12.
    W. Wong-Ng, H.F. McMurdie, B. Paretzkin, C.R. Hubbard, A.L. Dragoo, J.M. Stewart, Powder Diffract. 2, 191 (1987)CrossRefGoogle Scholar
  13. 13.
    C.W.T. Bulle-Lieuwma, A.H.v. Ommen, J. Hornstra, C.N.A.M. Aussems, J. Appl. Phys. 71, 2211 (1992)CrossRefGoogle Scholar
  14. 14.
    M.L.A. Dass, D.B. Fraser, C.S. Wei, Appl. Phys. Lett. 58, 1308 (1991)CrossRefGoogle Scholar
  15. 15.
    R.T. Tung, Appl. Phys. Lett. 68, 3461 (1996)CrossRefGoogle Scholar
  16. 16.
    K. Inoue, K. Mikagi, H. Abiko, T. Kikkawa, Technical Digest of International Electron Devices Meeting (IEEE, New York, 1995), p. 445CrossRefGoogle Scholar
  17. 17.
    R.T. Tung, F. Schrey, Appl. Phys. Lett. 54, 852 (1989)CrossRefGoogle Scholar
  18. 18.
    K. Kawamura, T. Saiki, R. Nakamura, Jpn. J. Appl. Phys. 45, 3972 (2006)CrossRefGoogle Scholar
  19. 19.
    Z. Shen, Y. Matsuki, T. Shimoda, J. Am. Chem. Soc. 134, 8034 (2012)CrossRefGoogle Scholar
  20. 20.
    Chemical Vapour Deposition: Precursors, Processes and Applications (Royal Society of Chemistry, London, 2008)Google Scholar
  21. 21.
    Y. Liu, L. Overzet, M. Goeckner, Thin Solid Films 515, 6730 (2007)CrossRefGoogle Scholar
  22. 22.
    I. Karpov, G. Bratina, L. Sorba, A. Franciosi, M.G. Simmonds, W.L. Gladfelter, J. Appl. Phys. 76, 3471 (1994)CrossRefGoogle Scholar
  23. 23.
    J.A. Glass, S.S. Kher, J.T. Spencer, Chem. Mater. 4, 530 (1992)CrossRefGoogle Scholar
  24. 24.
    M.J. Meziani, C.E. Bunker, F. Lu, H. Li, W. Wang, E.A. Guliants, R.A. Quinn, Y.-P. Sun, ACS Appl. Mater. Interfaces 1, 703 (2009)CrossRefGoogle Scholar
  25. 25.
    J.A. Haber, W.E. Buhro, J. Am. Chem. Soc. 120, 10847 (1998)CrossRefGoogle Scholar
  26. 26.
    T.J. Foley, C.E. Johnson, K.T. Higa, Chem. Mater. 17, 4086 (2005)CrossRefGoogle Scholar
  27. 27.
    R.J. Jouet, A.D. Warren, D.M. Rosenberg, V.J. Bellitto, K. Park, M.R. Zachariah, Chem. Mater. 17, 2987 (2005)CrossRefGoogle Scholar
  28. 28.
    Z. Shen, J. Li, Y. Matsuki, T. Shimoda, Chem. Comm. 47, 9992 (2011)CrossRefGoogle Scholar
  29. 29.
    D.M. Frigo, G.J.M. van Eijden, P.J. Reuvers, C.J. Smit, Chem. Mater. 6, 190 (1994)CrossRefGoogle Scholar
  30. 30.
    Z.-F. Xu, Y. Wang, J. Phys. Chem. C 115, 20565 (2011)CrossRefGoogle Scholar
  31. 31.
    C. Adlhart, E. Uggerud, Chem. Eur. J. 13, 6883 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Kua, W.A. Goddard, J. Am. Chem. Soc. 121, 10928 (1999)CrossRefGoogle Scholar
  33. 33.
    T. Tanaka, T. Nakajima, K. Yamashita, Thin Solid Films 409, 66 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations