Advertisement

Liquid Silicon

  • Tatsuya Shimoda
Chapter

Abstract

Since Cyclopentasilane (CPS) is used as a raw material for all of the silicon-based solutions needed for solar cells, thin-film transistors, and ultimately metal-oxide semiconductor field-effect transistors (MOSFETs), its basic properties are first introduced in this chapter. Concerning the production or conversion steps from CPS to Si films shown in Fig. 3.2, I introduce the production steps up to the formation of Si ink (i, p, n) in this chapter. How to synthesize the silicon solution and its physical properties are described. CPS can be polymerized by irradiation with ultraviolet (UV) light so as to form polydihydrosilane (polysilane) and then is dissolved into an organic solvent to form an intrinsic silicon solution or silicon ink. During polymerization under UV irradiation, doped silicon solutions of both n-type and p-type can be prepared by doping with phosphorus and boron, respectively.

Keywords

Cyclopentasilane (CPS) Polydihydrosilane Si ink Size-exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) Specific viscosity 

References

  1. 1.
    E. Hengge, G. Bauer, Angew. Chem. Int. Ed. 12, 316 (1973)CrossRefGoogle Scholar
  2. 2.
    E. Hengge, in Plenary Lecture at the 5th International Symposium on Organosilicon Chemistry (Karlsruhe, 1978), p. 14Google Scholar
  3. 3.
    E. Hengge, G. Bauer, Angew. Chem. 85, 304 (1973)Google Scholar
  4. 4.
    E. Hengge, G. Bauer, Monatshefte fur Chemie 106, 503 (1975)CrossRefGoogle Scholar
  5. 5.
    F.S. Kipping, J.E. Sands, J. Chem. Soc. Trans. 119, 830 (1921)CrossRefGoogle Scholar
  6. 6.
    T. Shimoda, T. Masuda, Jpn J. Appl. Phys. 53, 02BA01 (2014)CrossRefGoogle Scholar
  7. 7.
    V.S. Mastryukov, M. Hofmann, F. Schaefer III, J. Phys. Chem. A 103, 5581 (1999)CrossRefGoogle Scholar
  8. 8.
    C.P. Li, X.J. Li, J.C. Yang, J. Phys. Chem. A 110, 12026 (2006)CrossRefGoogle Scholar
  9. 9.
    H.S. Nalwa, Hand book of Photochemistry and photobiology, vol 1 (American scientific, Los Angeles, 2003)Google Scholar
  10. 10.
    J.R.G. Thorne, S.A. Williams, R.M. Hochstrasser, P.J. Fagan, Chem. Phys. 157, 401 (1991)CrossRefGoogle Scholar
  11. 11.
    K. Fukui, Science 218, 747 (1982)CrossRefGoogle Scholar
  12. 12.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  13. 13.
    P.T. Lam, A. Sugiyama, T. Masuda, T. Shimoda, N. Otsuka, D.H. Chi, Chem. Phys. 400, 59 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Masuda, Y. Matsuki, T. Shimoda, Polymer 53, 2973 (2012)CrossRefGoogle Scholar
  15. 15.
    G.R. Strobl, The Physics of Polymers (Springer, Heidelberg, 2007)Google Scholar
  16. 16.
    M.P. Stevens, Polymer Chemistry: an Introduction, 3rd edn. (Oxford University Press, Oxford, 1999)Google Scholar
  17. 17.
    Handbook of Chemistry and Physics 88th ed. (CRC Press, Boca Raton, 2008)Google Scholar
  18. 18.
    P.R. Schleyer, M. Kaupp, F. Hampel, M. Bremer, K. Mislow, J. Am. Chem. Soc. 114, 6791 (1992)CrossRefGoogle Scholar
  19. 19.
    T. Masuda, in Ph. D thesis of Graduate School and Faculty of Information Science and Electrical Engineering “A study on Silicon ink and its Technology for Thin Film Formation”, (Kyushu university, 2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations