Device Fabrication by n-RP

  • Tatsuya Shimoda


In  Chap. 14, a novel patterning method of oxide material named nano-rheology printing (n-RP) was introduced, which is a direct imprinting of the oxide precursor gel. It was proven that oxide gels have a viscoelastic property at some temperature range if solutions are properly designed and synthesized. We demonstrated fine oxide patterns with well-defined shape were able to be formed by thermal imprinting.

In this chapter, we report the adoption of the n-RP method as a fabrication tool of actual electronic devices. This corresponds to step 2 in Fig.  11.2 (Chap.  11 Guideline to oxide-based materials) which shows the developmental step to the printed electronics.

In Sect. 19.1, fabrication of two types of thin-film transistors (TFTs) is introduced: a FGT (ferroelectric gate-insulator transistor) and a switching TFT (normal TFT). The former TFT, which has a memory function due to ferroelectric nature of the gate insulator, was already introduced in Chap.  16, where the conventional fabrication method was used. Here, a FGT fabricated by the n-RP method is introduced. The channel lengths of both TFTs were 0.5 μm. This size has never been realized in the conventional PE (printed electronic) technologies.

In Sect. 19.2, a new TFT with improved structure and process is introduced. Because the structures of the TFTs described in Sect. 19.1 are very primitive and the used n-RP process for making them is not so robust, more complicated TFT structure and more sophisticated n-RP process are required inorder to apply the n-RP for practical devices and to ensure its process reliability, respectively.

As the imprinting method has an ability to make patterns with tens of nanometer, there would be much room to reduce the size of TFT. In fact, we demonstrated a reduced size TFT of which channel length is 200 nm in Sect. 19.3.

In Sect. 19.4, fabrication of an active-matrix backplane (AM-BP) for a display by using n-RP is introduced. We prepared a set of thermoplastic oxide gels sufficient for fabrication of the AM-BP and developed a suitable alignment system, giving a high alignment accuracy of less than 5 μm, for making the AM-BP. The operation of the transistors in the AM-BP was confirmed.


Nano-rheology printing Direct imprinting Oxide thin-film transistors (TFTs) Active-matrix backplane (AM-BP) UV/ozone-assisted annealing 


  1. 1.
    T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater. Chem. C 2(1), 40 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T. Tue, E. Tokumitsu, T. Shimoda, Appl. Phys. Lett. 97, 173509 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Li, H. Kameda, B.N.Q. Trinh, T. Miyasako, P.T. Tue, E. Tokumitsu, T. Mitani, T. Shimoda, Appl. Phys. Lett. 97, 102905 (2010)CrossRefGoogle Scholar
  4. 4.
    P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, IEEE Trans. Electron Devices 60, 320 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Shimoda, J. Li, P. T. Tue, H. Tsukada, Japan patent application no. 2013-194038, (2013)Google Scholar
  6. 6.
    A.C. Arias, S.E. Ready, R. Lujan, W.S. Wong, K.E. Paul, A. Salleo, M.L. Chabinyc, R. Apte, A. Robert, Y.W. Street, P. Liu, B. Ong, Appl. Phys. Lett. 85(15), 3304 (2004)CrossRefGoogle Scholar
  7. 7.
    K.E. Paul, W.S. Wong, S.E. Ready, R.A. Street, Appl. Phys. Lett. 83(10), 2070 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 440(7085), 783 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290(5499), 2123 (2000)CrossRefGoogle Scholar
  10. 10.
    J.Z. Wang, Z.H. Zheng, H.W. Li, W.T.S. Huck, H. Sirringhaus, Nat. Mater. 3(3), 171 (2004)CrossRefGoogle Scholar
  11. 11.
    P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A.J. Flewitt, J. Robertson, G.W. Hsieh, F.M. Li, A. Nathan, A.C. Ferrari, W.I. Milne, J. Appl. Phys. 102(4), 043710 (2007)CrossRefGoogle Scholar
  12. 12.
    D.H. Lee, Y.J. Chang, G.S. Herman, C.H. Chang, Adv. Mater. 19(6), 843 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Nakamura, S. Matsumoto, S. Arae, Y. Sone, Y. Hirano, Ricoh Tech. Rep. 39, 07 (2014)Google Scholar
  14. 14.
    D. Kim, Y. Jeong, K. Song, S.-K. Park, G. Cao, J. Moon, Langmuir 25(18), 11149 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Janeta, L. John, J. Ejfler, S. Szafert, RSC Adv. 5(88), 72340 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Li, E. Tokumitsu, M. Koyano, T. Mitani, T. Shimoda, Appl. Phys. Lett. 101(13), 132104 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Nagahara, D. Hirose, J. Li, J. Mihara, T. Shimoda, Ceram. Int. 42(6), 7730 (2016)CrossRefGoogle Scholar
  18. 18.
    P.T. Tue, K. Fukada, T. Shimoda, High-performance oxide thin film transistor fully fabricated by a direct rheology-imprinting. Appl. Phys. Lett. 111, 223504 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Murakami, J. Li, D. Hirose, S. Kohara, T. Shimoda, J. Mater. Chem. C 3(17), 4490 (2015)CrossRefGoogle Scholar
  20. 20.
    P.T. Tue, S. Inoue, Y. Takamura, T. Shimoda, Appl. Phys. A 122(6), 1 (2016)CrossRefGoogle Scholar
  21. 21.
    P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, IEEE Trans. Electron Devices 60(1), 320 (2013)CrossRefGoogle Scholar
  22. 22.
    O. F Göbel, M. Nedelcu, U. Steiner, Adv. Funct. Mater. 17(7), 1131 (2007)CrossRefGoogle Scholar
  23. 23.
    R. Ganesan, J. Dumond, M.S.M. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6(2), 1494 (2012)CrossRefGoogle Scholar
  24. 24.
    S.-H.K. Park, C.-S. Hwang, D.-H. Cho, S.M. Yoon, S. Yang, C. Byun, M. Ryu, J.-I. Lee, O.S. Kwon, W.-S. Cheong, H.Y. Chu, K.I. Cho, SID Symp. Dig. Tech. Pap. 40(1), 276 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Li, P. Zhu, P. T. Tue, S. Inoue, T. Shimoda, submitted to the J. Mater. Chem. CGoogle Scholar
  26. 26.
    W. Xu, D. Liu, H. Wang, L. Ye, Q. Miao, J.-B. Xu, Appl. Phys. Lett. 104(17), 173504 (2014)CrossRefGoogle Scholar
  27. 27.
    S.Y. Lee, Trans. Electr. Electron. Mater. 16(3), 03 (2015)CrossRefGoogle Scholar
  28. 28.
    J.K. Jeong, H.W. Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, Appl. Phys. Lett. 93(12), 123508 (2008)CrossRefGoogle Scholar
  29. 29.
    Phan, Tue; Li, Jinwang; Shimoda, Tatsuya, “Nano-Rheology Printing of Sub-0.2 μm Channel Length Oxide Thin-Film Transistors” to be published in Nano FuturesGoogle Scholar
  30. 30.
    P.T. Tue, S. Inoue, Y. Takamura, T. Shimoda, Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors. Appl. Phys. A 122(6), 1–8 (2016).
  31. 31.
    Y. Murakami, J. Li, T. Shimoda, Highly conductive ruthenium oxide thin films by a low-temperature solution process and green laser annealing. Mater. Lett. 152, 121–124 (2015). CrossRefGoogle Scholar
  32. 32.
    C. R. Kagan, P. Andry, Thin film transistors, CRC Press, ISBN-10:0824709594, (2003)Google Scholar
  33. 33.
    P.T. Tue, K. Fukada, T. Shimoda, High-performance oxide thin film transistor fully fabricated by a direct rheology-imprinting. Appl. Phys. Lett. 111, 223504 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Hirose, H. Koyama, K. Fukada, Y. Murakami, K. Satou, S. Inoue, T. Shimoda, All-solution-printed oxide thin-film transistors by direct thermal nanoimprinting for use in active-matrix arrays. Phys. Status Solidi A 214, 1–15 (2016). CrossRefGoogle Scholar
  35. 35.
    Y. Murakami, P. T. Tue, H. Tsukada, J. Li, T. Shimoda, Preparation of ruthenium metal and ruthenium oxide thin films by a low-temperature solution process, Proc. 20th Int. Disp. Workshops (IDW), (2013), pp. 1573–1576Google Scholar
  36. 36.
    D. Hirose, T. Shimoda, Evaluating the state of indium-tin oxide gels via estimation of their cohesive energy, Jpn. J. Appl. Phys. 53, 02BC01-1-02BC01-7 (2014)CrossRefGoogle Scholar
  37. 37.
    J.H. Park, W.J. Choi, S.S. Chae, J.Y. Oh, S.J. Lee, K.M. Song, H.K. Baik, Structural and electrical properties of solution-processed gallium-doped indium oxide thin-film transistors. Jpn. J. Appl. Phys. 50, 080202 (2011)CrossRefGoogle Scholar
  38. 38.
    D. Kim, C.Y. Koo, K. Song, Y. Jeong, J. Moon, Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 95(0), 252103 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tatsuya Shimoda
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations