Atomic Force Microscopic Characterization of Wire Electrical Discharge Machined Samples

  • Hulas Raj TondayEmail author
  • Pravin Kumar Singh
  • Anand Mukut Tigga
Conference paper


Atomic force microscopy (AFM) is a kind of scanning probe microscopy which results in precise and accurate 2D and 3D images for examining surface topography and morphology in quantitative and qualitative terms. The main objective of this research is to characterize the surface integrity of machined samples by employing atomic force microscopy (AFM). The secondary aim is to accomplish statistical analysis of surface roughness based on different sets of machining parameters. In the current research, Taguchi’s L16 orthogonal arrays are adopted, and sixteen numbers of Ti6Al4V samples have been produced by utilizing the wire electrical discharge machining (WEDM). A comparison has also been made by probing the surface topographies, cross-sectional profiles, and roughness graphs to confirm the influence of machining parameters on the surface quality of machined samples. Through statistical analysis, the cutting voltage is found the most significant machining variable which influences the response variable.


Wire electrical discharge machining Atomic force microscopy Surface parameters Surface topography Surface roughness Ti6Al4V Taguchi method 



Electrical discharge machining


Surface roughness


Analysis of variance


Sums of squares


Mean of square


Fisher’s ratio


Degree of freedom


Atomic force microscope


  1. 1.
    S. Sarkar, S. Mitra, B. Bhattacharyya, Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy, J. Mater. Process. Technol. 159 (2005) 286–294. Scholar
  2. 2.
    S. Shakeri, A. Ghassemi, M. Hassani, Investigation of material removal rate and surface roughness in wire electrical discharge machining process for cementation alloy steel using artificial neural network, Int. J. Adv. Manuf. Technol. 82 (2016) 549–557. Scholar
  3. 3.
    T. A. Spedding, Z. Q. Wang, Parametric optimization and surface characterization of wire electrical discharge machining process, Precis. Eng. 20 (1997) 5–15.CrossRefGoogle Scholar
  4. 4.
    M. Altug, M. Erdem, C. Ozay, Experimental investigation of kerf of Ti6Al4V exposed to different heat treatment processes in WEDM and optimization of parameters using genetic algorithm, Int. J. Adv. Manuf. Technol. 78 (2015) 1573–1583. Scholar
  5. 5.
    K.T. Hoang, S.H. Yang, Kerf analysis and control in dry micro-wire electrical discharge machining, Int. J. Adv. Manuf. Technol. 78 (2015) 1803–1812.CrossRefGoogle Scholar
  6. 6.
    V. Aggarwal, S.S. Khangura, R.K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, Int. J. Adv. Manuf. Technol. 79 (2015) 31–47. Scholar
  7. 7.
    C.R.A. Valois, L.P. Silva, R.B. Azevedo, Multiple Autoclave Cycles Affect the Surface of Rotary Nickel-Titanium Files : An Atomic Force Microscopy Study, J. Endodontics 34 (2008) 859–862. Scholar
  8. 8.
    S. Gebhard, F. Pyczak, M. Göken, Microstructural and micromechanical characterisation of TiAl alloys using atomic force microscopy and nanoindentation, Mater. Sci. Eng. 523 (2009) 235–241. Scholar
  9. 9.
    S. Sevim, S. Tolunay, H. Torun, Micromachined sample stages to reduce thermal drift in atomic force microscopy, Microsyst. Technol. 21 (2015) 1559–1566. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hulas Raj Tonday
    • 1
  • Pravin Kumar Singh
    • 2
  • Anand Mukut Tigga
    • 1
  1. 1.Department of Manufacturing EngineeringNIT JamshedpurAdityapurIndia
  2. 2.Department of Mechanical EngineeringAMITY UniversityRanchiIndia

Personalised recommendations