Advertisement

Surgical Biopsy Techniques and Adjuncts

  • Ben Tudor-GreenEmail author
Chapter
Part of the Head and Neck Cancer Clinics book series (HNCC)

Abstract

The significance of oral potentially malignant disorders (OPMD) lies in its association with malignant transformation to oral squamous cell carcinoma (OSCC) [1]. OPMD can present in a number of ways, as homogeneous (flat, thin, white) and non-homogeneous (speckled, red and white, erythroleukoplakia) lesions but can also present as oral submucous fibrosis and oral lichenoid/oral lichen planus (OLP). OPMD is diagnosed by clinical history and biopsy with histological examination. Prior to biopsy, it is important to be aware of the patients on anticoagulant or antiplatelet therapy as these may have to be stopped for a number of days prior to biopsy and should seek advice from a haematologist if unsure [2]. There also is a need to be aware of any anatomical structures at risk. If situated at the tongue base or oropharynx, an examination under anaesthetic is performed, and if a lesion is situated proximal to major structures, a biopsy may be contraindicated. Biopsy remains the gold standard and is important in helping exclude other keratotic lesions. It can present as a spectrum of epithelial change. The most commonly used grading system is the WHO 2005 system that grades dysplasia into mild, moderate and severe [3]. The use of a binary system has been suggested for reducing interobserver variability of histological grading and for helping guide clinical decisions for appropriate intervention, and a later study confirmed its superior reproducibility [4, 5]. However, Dost et al. argued that the severity of OPMD was not associated with predicting patient outcomes or determining appropriate management and advised treatment [6]. Non-homogenous leukoplakias are associated with a higher risk of dysplasia or OSCC compared to homogeneous lesions. Proliferative verrucous leukoplakia (PVL) is a subtype and has a higher degree of malignant transformation [1, 7]. It has been suggested that in the absence of dysplasia, it can be a precursor to verrucous carcinoma [8].

References

  1. 1.
    Field EA, McCarthy CE, Ho MW, et al. The management of oral epithelial dysplasia: the Liverpool algorithm. Oral Oncol. 2015;51:883–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Green B, Mendes RA, Van der Valk R, Brennan PA. Novel anticoagulants- an update on the latest developments and management for clinicians treating patients on these drugs. J Oral Pathol Med. 2016;45:551–6.PubMedCrossRefGoogle Scholar
  3. 3.
    van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009;45:317–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Kujan O, Oliver RJ, Khattab A, et al. Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol. 2006;42:987–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Nankivell P, Williams H, Matthews P, et al. The binary oral dysplasia grading system: validity testing and suggested improvement. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:87–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Dost F, Le Cao K, Ford PJ, et al. Malignant transformation of oral epithelial dysplasia: a real-world evaluation of histopathologic grading. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:343–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Bagan JV, Jiminez Y, Sanchis JM, et al. Proliferative verrucous leukoplakia: high incidence of gingival squamous cell carcinoma. J Oral Pathol Med. 2003;32:379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van der Waal I, Reichart PA. Oral proliferative verrucous leukoplakia revisited. Oral Oncol. 2008;44:719–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Warnakulasuriya S, Ariyawardana A. Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med. 2016;45:155–66.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ho MW, Risk JM, Woolgar JA, et al. The clinical determinants of malignant transformation of oral epithelial dysplasia. Oral Oncol. 2012;48:969–76.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ho MW, Field EA, Field JK, et al. Outcomes of oral squamous cell carcinoma arising from oral epithelial dysplasia: rationale for monitoring premalignant lesions in a multidisciplinary clinic. Br J Oral Maxillofac Surg. 2013;51:594–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Speight PM. Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 2007;1:61–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    van der Waal I, Schepman KP, van der Meij EH, Smeele LE. Oral leukoplakia: a clinicopathological review. Oral Oncol. 1997;33:291–301.PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson PJ, McCaul JA, Ridout F, Hutchinson IL. To treat…or not to treat? Clinicians view on the management of oral potentially malignant disorders. Br J Oral Maxillofac Surg. 2015;53:1027–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Kanatas AN, Fisher SE, Lowe D, et al. The configurations of clinics and the use of biopsy and photography in oral premalignancy: a survey of consultants of the British Association of Oral & Maxillofacial Surgeons. Br J Oral Maxillofac Surg. 2011;49:99–105.PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar A, Cascarini L, McCaul JA, et al. How should we manage oral leukoplakia? Br J Oral Maxillofac Surg. 2013;51:377–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mehanna HM, Rattay T, Smith J, McConkey CC. Treatment and follow-up of oral dysplasia- a systematic review and meta-analysis. Head Neck. 2009;31:1600–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Balasundaram I, Payne KF, Al-Hadad I, et al. is there any benefit in surgery for potentially malignant disorders of the oral cavity? J Oral Pathol Med. 2014;43:239–44.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Howlett DC, Triantafyllou A. Evaluation: fine needle aspiration cytology, ultrasound-guided core biopsy and open biopsy techniques. Adv Otorhinolaryngol. 2016;78:39–45.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Triantafyllou A, Hunt JL, Devaney KO, Ferlito A. A perspective of comparative salivary and breast pathology: Part I: microstructural aspects, adaptations and cellular events. Eur Arch Otorhinolaryngol. 2014;271:647–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Gillani M, Akhtar F, Ali Z, et al. Diagnostic accuracy, sensitivity, specificity and positive predictive value of fine needle aspiration cytology (FNAC) in intra oral tumours. Asian Pac J Cancer Prev. 2012;13:3611–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Gandhi S, Lata J, Gandhi N. Fine needle aspiration cytology: a diagnostic aid for oral lesions. J Oral Maxillofac Surg. 2011;69:1668–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Wagner JM, Conrad RD, Cannon TY, Alleman AM. Ultrasound-guided transcutaneous needle biopsy of the base of tongue and floor of mouth from a submental approach. J Ultrasound Med. 2016;35:1009–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Mehrotra R. The role of cytology in oral lesions: a review of recent improvements. Diagn Cytopathol. 2012;40:73–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Gupta S, Shah JS, Parikh S, et al. Clinical correlative study on early detection of oral cancer and precancerous lesions by modified oral brush biopsy and cytology followed by histopathology. J Canc Res Ther. 2014;10:232–8.CrossRefGoogle Scholar
  26. 26.
    Trakroo A, Sunil MK, Trivedi A, et al. Efficacy of oral brush biopsy without computer-assisted analysis in oral premalignant and malignant lesions: a study. J Int Oral Health. 2015;7:33–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Babshet M, Nandimath K, Pervatikar S, Naikmasur V. Efficacy of oral brush cytology in the evaluation of the oral premalignant and malignant lesions. J Cytol. 2011;28:16–172.CrossRefGoogle Scholar
  28. 28.
    Ye X, Zhang J, Tan Y, et al. Meta-analysis of two computer-assisted screening methods for diagnosing oral precancer and cancer. Oral Oncol. 2015;1:966–75.CrossRefGoogle Scholar
  29. 29.
    Navone R, Pentenero M, Rostan I, et al. Oral potentially malignant lesions: first-level micro-histological diagnosis from tissue fragments sampled in liquid-based diagnostic cytology. J Oral Pathol Med. 2008;37:358–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Pentenero M, Marino R, Tempia Valenta G, et al. Microbiopsy a novel sampling technique to early detect dysplastic/malignant alterations in oral mucosal lesions: practicability by general dentists. J Oral Pathol Med. 2014;43:435–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Haldar S, Sinnott JD, Tekeli KM, et al. Biopsy of parotid masses: review of current techniques. World J Radiol. 2016;28:501–5.CrossRefGoogle Scholar
  32. 32.
    Shah KS, Ethunandan M. Tumour seeding after fine-needle aspiration and core biopsy of the head and neck--a systematic review. Br J Oral Maxillofac Surg. 2016;54:260–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Howlett DC, Skelton E, Moody AB. Establishing an accurate diagnosis of a parotid lump: evaluation of the current biopsy methods - fine needle aspiration cytology, ultrasound-guided core biopsy, and intraoperative frozen section. Br J Oral Maxillofac Surg. 2015;53:580–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Skelton E, Jewison A, Okpaluba C, et al. Image-guided core needle biopsy in the diagnosis of malignant lymphoma. Eur J Surg Oncol. 2015;41:852–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Pfeiffer J, Maier W, Boedeker CC, Ridder GJ. Transmucosal core needle biopsy: a novel diagnostic approach to oral and oropharyngeal lesions. J Oral Maxillofac Surg. 2014;72:1594–600.PubMedCrossRefGoogle Scholar
  36. 36.
    Ahn D, Roh JH, Kim JK. Ultrasound-guided core needle biopsy for head and neck mass lesions in patients undergoing antiplatelet or anticoagulation therapy: a preliminary report. J Ultrasound Med. 2017;36:1339–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Novoa E, Gurtler N, Amoux A, Kraft M. Role of ultrasound-guided core-needle biopsy in the assessment of head and neck lesions: a meta-analysis and systematic review of the literature. Head Neck. 2012;34:1497–503.PubMedCrossRefGoogle Scholar
  38. 38.
    Allin D, David S, Jacob A, et al. Use of core biopsy in diagnosing cervical lymphadenopathy: a viable alternative to surgical excisional biopsy of lymph nodes? Ann R Coll Surg Engl. 2017;99:242–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Goodson ML, Sloan P, Robinson CM, et al. Oral precursor lesions and malignant transformation--who, where, what, and when? Br J Oral Maxillofac Surg. 2015;53:831–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Pentenero M, Carrozzo M, Pagano M, et al. Oral mucosal dysplastic lesions and early squamous cell carcinomas: underdiagnosis from incisional biopsy. Oral Dis. 2003;9:68–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee JJ, Hung HC, Cheng SJ, et al. Factors associated with underdiagnosis from incisional biopsy of oral leukoplakic lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:217–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008;37:1–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Jeong WJ, Paik JH, Cho SW, et al. Excisional biopsy for management of tongue leukoplakia. J Oral Pathol Med. 2012;41:384–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Kerawala CJ. Incisional biopsy: reducing artefact. Br J Oral Maxillofac Surg. 1995;33:396.PubMedCrossRefGoogle Scholar
  45. 45.
    Dhanda J, Uppal N, Chowlia H, et al. Features and prognostic utility of biopsy in oral squamous cell carcinoma. Head Neck. 2012;38:E1857–62.CrossRefGoogle Scholar
  46. 46.
    Shah N, Ray JG, Kundu S, Sardana D. Surgical management of chronic hyperplastic candidiasis refractory to systemic antifungal treatment. J Lab Phys. 2017;9:136–9.Google Scholar
  47. 47.
    Sitheeque MA, Samaranayake LP. Chronic hyperplastic candidosis/candidiasis (candidal leukoplakia). Crit Rev Oral Biol Med. 2003;14:253–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Krishnan PA. Fungal infections of the oral mucosa. Indian J Dent Res. 2012;23:650–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J Oral Microbiol. 2011;3:5771.CrossRefGoogle Scholar
  50. 50.
    Shin ES, Chung SC, Kim YK, et al. The relationship between oral Candida carriage and the secretor status of blood group antigens in saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96:48–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Field EA, Field JK, Martin MV. Does Candida have a role in oral epithelial neoplasia? J Med Vet Mycol. 1989;27:277–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Gainza-Ciraugui ML, Nieminen MT, Novak Frazer L, et al. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. J Oral Pathol Med. 2013;42:243–9.CrossRefGoogle Scholar
  53. 53.
    McCullough M, Jaber M, Barrett AW, et al. Oral yeast carriage correlates with presence of oral epithelial dysplasia. Oral Oncol. 2002;38:391–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Pontes HA, Paiva HB, de Freitas Silva BS, et al. Oral candidiasis mimicking an oral squamous cell carcinoma: report of a case. Gerodontology. 2012;29:70–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Abdulmajeed AA, Farah CS. Can immunohistochemistry serve as an alternative to subjective histopathological diagnosis of oral epithelial dysplasia? Biomark Cancer. 2013;10:49–60.Google Scholar
  56. 56.
    Bienk Dias K, Pereira Costa Flores A, Gaiger Oliveira M, et al. Predictive value of p63, ki-67, and survivin expression in oral leukoplakia: a tissue microarray study. Microsc Res Tech. 2017;80:845.PubMedCrossRefGoogle Scholar
  57. 57.
    Pigatti FM, Taveira LA, Soares CT. Immunohistochemical expression of Bcl-2 and Ki-67 in oral lichen planus and leukoplakia with different degrees of dysplasia. Int J Dermatol. 2015;54:150–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Acay RR, Felizzola CR, de Araujo N, de Sousa SO. Evaluation of proliferative potential in oral lichen planus and oral lichenoid lesions using immunohistochemical expression of p53 and Ki67. Oral Oncol. 2006;42:475–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Dionne KR, Warnakulasuriya S, Zain RB, Cheong SK. Potentially malignant disorders of the oral cavity. Int J Cancer. 2015;136:503–15.PubMedGoogle Scholar
  60. 60.
    Mattila R, Alanen K, Syrjanen S. Immunohistochemical study on topoisomerase IIalpha, Ki-67 and cytokeratin-19 in oral lichen planus lesions. Arch Dermatol Res. 2007;298:381–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Sudha VM, Hemavathy S. Role of bcl-2 oncoprotein in oral potentially malignant disorders and squamous cell carcinoma: an immunohistochemical study. Indian J Dent Res. 2011;22:520–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Garewal J, Garewal R, Sircar R. Expression of Bcl-2 and MIB-1 markers in oral squamous cell carcinoma (OSCC) - a comparative study. J Clin Diagn Res. 2014;8:QC01–4.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Silva AD, Maraschin BJ, Laureano NK, et al. Expression of E-cadherin and involucrin in leukoplakia and oral cancer: an immunocytochemical and immunohistochemical study. Braz Oral Res. 2017;6:e19.CrossRefGoogle Scholar
  64. 64.
    Du Y, Li H. Expression of E-cadherin in oral lichen planus. Exp Ther Med. 2015;10:1544–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nguyen CT, Okamura T, Morita KI, et al. LAMC2 is a predictive marker for the malignant progression of leukoplakia. J Oral Pathol Med. 2017;46:223–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Chaudhari NT, Tupkari JV, Joy T, Ahire MS. Human MutL homolog 1 immunoexpression in oral leukoplakia and oral squamous cell carcinoma: a prospective study in Indian population. J Oral Maxillofac Pathol. 2016;20:453–61.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bhattacharya A, Roy R, Snijders AM, et al. Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastases. Clin Cancer Res. 2011;17:7024–34.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bhosale PG, Cristea S, Ambatipudi S, et al. Chromosomal alterations and gene expression changes associated with the progression of leukoplakia to advanced gingivobuccal cancer. Transl Oncol. 2017;10:396–409.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lee JJ, Hong WK, Hittleman WN, et al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin Cancer Res. 2000;6:1702–10.PubMedGoogle Scholar
  70. 70.
    Partridge M, Pateromichelakis S, Phillps E, et al. A case-control study confirms that microsatellite assay can identify patients at risk of developing oral squamous cell carcinoma within a field of cancerisation. Cancer Res. 2000;60:3893–8.PubMedGoogle Scholar
  71. 71.
    Rosin MP, Cheng X, Poh C, et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res. 2000;6:357–62.PubMedGoogle Scholar
  72. 72.
    Rousseau A, Lim MS, Lim Z, Jordan RC. Frequent cyclin D1 gene amplification and protein overexpression in oral epithelial dysplasias. Oral Oncol. 2001;37:268–75.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Poh CF, Zhu Y, Chen E, et al. Unique FISH patterns associated with cancer progression of oral dysplasia. J Dent Res. 2012;91:52–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Raju B, Mehrotra R, Oijordsbakken G, et al. Expression of p53, cyclin D1 and Ki-67 in pre-malignant and malignant oral lesions: association with clinicopathological parameters. Anticancer Res. 2005;25:4699–706.PubMedGoogle Scholar
  75. 75.
    Inoue H, Miyazaki Y, Kikuchi K, et al. Podoplanin promotes cell migration via the EGF-Src-Cas pathway in oral squamous cell carcinoma cell lines. J Oral Sci. 2012;54:241–50.PubMedCrossRefGoogle Scholar
  76. 76.
    D’Souza B, Nayak R, Kotrashetti VS. Immunohistochemical expression of podoplanin in clinical variants of oral leukoplakia and its correlation with epithelial dysplasia. Appl Immunohistochem Mol Morphol. 2018;26:132.PubMedGoogle Scholar
  77. 77.
    Saintigny P, El-Naggar AK, Papadimitrakopoulou V, et al. DeltaNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia. Clin Cancer Res. 2009;15:6284–91.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Feng JQ, Mi JG, Wu L, et al. Expression of podoplanin and ABCG2 in oral erythroplakia correlate with oral cancer development. Oral Oncol. 2012;48:848–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Kreppel M, Kreppel B, Drebber U, et al. Podoplanin expression in oral leukoplakia: prognostic value and clinicopathological implications. Oral Dis. 2012;18:692–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Habiba U, Hida K, Kitamura T, et al. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia. Oncol Lett. 2017;13:321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Shaw R. The epigenetics of oral cancer. Int J Oral Maxillofac Surg. 2006;35:101–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Alazari NA, Sperandio M, Odell EW, et al. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders. J Oral Pathol Med. 2018;47:97–103.CrossRefGoogle Scholar
  83. 83.
    Hall GL, Shaw RJ, Field EA, et al. p16 Promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomarkers Prev. 2008;17:2174–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Abe M, Yamashita S, Mori Y, et al. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes. BMC Cancer. 2016;16:350.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Souto GR, Caliari MV, Lins CE, et al. Tobacco use increase the number of aneuploid nuclei in the clinically healthy oral epithelium. J Oral Pathol Med. 2010;39:605–10.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Giaretti W, Monteghirfo S, Pentenero M, et al. Chromosomal instability, DNA index, dysplasia, and subsite in oral premalignancy as intermediate endpoints of risk of cancer. Cancer Epidemiol Biomarkers Prev. 2013;22:1133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bremmer JF, Brakenhoff RH, Broeckaert MA, et al. Prognostic value of DNA ploidy status in patients with oral leukoplakia. Oral Oncol. 2011;47:956–60.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Fleskens SJ, Takes RP, Otte-Holler I, et al. Simultaneous assessment of DNA ploidy and biomarker expression in paraffin-embedded tissue sections. Histopathology. 2010;57:14–26.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    van Zyl AW, van Heerden MB, Langenegger E, van Heerden WF. Correlation between dysplasia and ploidy status in oral leukoplakia. Head Neck Pathol. 2012;6:322–7.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Torres-Rendon A, Stewart R, Craig GT, et al. DNA ploidy analysis by image cytometry helps to identify oral epithelial dysplasias with a high risk of malignant progression. Oral Oncol. 2009;45:468–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Bradley G, Odell EW, Raphael S, et al. Abnormal DNA content in oral epithelial dysplasia is associated with increased risk of progression to carcinoma. Br J Cancer. 2010;103:1432–42.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sperandio M, Brown AL, Lock C, et al. Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev Res (Phila). 2013;6:822–31.CrossRefGoogle Scholar
  93. 93.
    Siebers TJ, Bergshoeff VE, Otte-Holler I, et al. Chromosome instability predicts the progression of premalignant oral lesions. Oral Oncol. 2013;49:1121–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Adegun OK, Tomlins PH, Hagi-Pavli PE, et al. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Sci Med. 2012;27:795–804.CrossRefGoogle Scholar
  95. 95.
    Green B, Tsiroyannis C, Brennan PA. Optical diagnostic systems for assessing head and neck lesions. Oral Dis. 2016;22:180–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rashid A, Warnakulasuriya S. The use of light-based (optical) detection systems as adjuncts in the detection of oral cancer and oral potentially malignant disorders: a systematic review. J Oral Pathol Med. 2015;44:307–28.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Huber MA, Bsoul SA, Terezhalmy GT. Acetic acid wash and chemiluminescent illumination as an adjunct to conventional oral soft tissue examination for the detection of dysplasia: a pilot study. Quintessence Int. 2004;35:378–84.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ram S, Siar CH. Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. Int J Oral Maxillofac Surg. 2005;34:521–7.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Farah CS, McCollough MJ. A pilot case control study on the efficacy of acetic acid wash and chemiluminescent illumination (ViziLite) in the visualisation of oral mucosal white lesions. Oral Oncol. 2007;43:820–4.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Awan KW, Morgan PR, Warnakulasuriya S. Utility of chemiluminescence (ViziLite™) in the detection of oral potentially malignant disorders and benign keratoses. J Oral Pathol Med. 2011;40:541–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Epstein JB, Gorsky M, Lonky S, et al. The efficacy of oral lumenoscopy (ViziLite) in visualizing oral mucosal lesions. Spec Care Dent. 2006;26:171–4.CrossRefGoogle Scholar
  102. 102.
    Kerr AR, Sirois DA, Epstein JB. Clinical evaluation of chemiluminescent lighting: an adjunct for oral mucosal examinations. J Clin Dent. 2006;17:59–63.PubMedGoogle Scholar
  103. 103.
    McIntosh L, McCollough MJ, Farah CS. The assessment of diffused light illumination and acetic acid rinse (Microlux/DL) in the visualisation of oral mucosal lesions. Oral Oncol. 2009;45:e227–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Awan KH, Patil S. Efficacy of autofluorescence imaging as an adjunctive technique for examination and detection of oral potentially malignant disorders: a systematic review. J Contemp Dent Pract. 2015;16:744–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Mehrotra R, Singh M, Thomas S, et al. A cross-sectional study evaluating chemiluminescence and autofluorescence in the detection of clinically innocuous precancerous and cancerous oral lesions. J Am Dent Assoc. 2010;141:151–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Hamdoon Z, Jerjes W, McKenzie G, et al. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins. Photodiagnosis Photodyn Ther. 2016;13:211–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Jerjes W, Upile T, Conn B, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48:18–25.PubMedCrossRefGoogle Scholar
  108. 108.
    Tan NC, Herd MK, Brennan PA, Puxeddu R. The role of narrowband imaging in early detection of head and neck cancer. Br J Oral Maxillofac Surg. 2012;50:132–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Piazza C, Cocco D, Del Bon F, et al. Narrow band imaging and high definition television in the endoscopic evaluation of upper aero-digestive tract cancer. Acta Otorhinolaryngol Ital. 2011;31:70–5.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Yang SW, Lee YS, Chang LC, et al. Light sources used in evaluating oral leukoplakia: broadband white light versus narrowband imaging. Int J Oral Maxillofac Surg. 2013;42:693–701.PubMedCrossRefGoogle Scholar
  111. 111.
    Elvers D, Braunschweig T, Hilgers RD, et al. Margins of oral leukoplakia: autofluorescence and histopathology. Br J Oral Maxillofac Surg. 2015;53:164–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Farah CS, McIntosh L, Georgiou A, McCollough MJ. Efficacy of tissue autofluorescence imaging (VELScope) in the visualization of oral mucosal lesions. Head Neck. 2012;34:856–62.PubMedCrossRefGoogle Scholar
  113. 113.
    Simonato LE, Tomo S, Miyahara GI, et al. Fluorescence visualization efficacy for detecting oral lesions more prone to be dysplastic and potentially malignant disorders: a pilot study. Photodiagnosis Photodyn Ther. 2017;17:1–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Lane PM, Gilhuly T, Whitehead P, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11:024006.PubMedCrossRefGoogle Scholar
  115. 115.
    Huff K, Stark PC, Solomon LW. Sensitivity of direct tissue fluorescence visualization in screening for oral premalignant lesions in general practice. Gen Dent. 2009;57:34–8.PubMedGoogle Scholar
  116. 116.
    Klatt J, Gerich GE, Grobe A, et al. Fractal dimension of time-resolved autofluorescence discriminates tumour from healthy tissues in the oral cavity. J Craniomaxillofac Surg. 2014;42:852–4.PubMedCrossRefGoogle Scholar

Copyright information

© Peter A. Brennan, Tom Aldridge, Raghav C. Dwivedi, Rehan Kazi 2019

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial SurgeryQueen Victoria HospitalEast GrinsteadUK

Personalised recommendations