• Debarati Paul
  • Sangeeta Choudhury
  • Sudeep BoseEmail author


The advancement in current experimental science and its technology have made it possible to understand the interactions of microbes with host, biotic and abiotic factors, and host responses. It has been realized that a single microorganism on its own is insufficient to cause disease in human/plant/animals, unless it is supported by the surrounding environmental factors and the existing mini-ecosystem consisting of various other microbes that may play antagonistic or synergistic roles. Although, in present scenario, one cannot predict or specify the genera, classes, or species of microbes that regulate a disease phenotype, the conclusions drawn from several experimental and human studies strongly suggest the presence and/or the levels of specific microbes comprising a population that govern the host phenotype. The metabolic networking elucidates interplay of metabolomics and metagenomics revealing the correlations between host and gut bacteria in health and disease conditions. This chapter summarizes the dynamics of microbial associations and a mechanism of divergent actions connecting the microbiome prevalent in environmental conditions (soil/marine-to-plant) leading to diverse health concerns.

The shaping of host-immune responses as well as modulating effects caused by interaction with drugs is linked with alterations in composition and diversity of microbial community in several studies. However, many questions will remain unanswered before we can bring out the full prognostic and predictive potential utilization of microbiomes.


Microbiota Gut Diversity Prebiotics Probiotics Microbial infection Host interactions Pathogenesis 



SB and SC are thankful to Mr. Sartaj Khurana, Mrs. Rizwana Mirza, Mr. Kamran Manzoor Waidha, and Mr. Rajat Gupta for helping us in the preparation of figures for this book chapter. SB would like to express his sincere gratitude to the editors for all technical supports.


  1. Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbors a unique microbiome. Science Translational Medicine, 6(237), 237ra65.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alfaleh, K., & Anabrees, J. (2014). Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evidence-Based Child Health: A Cochrane Review Journal, 9(3), 584–671.CrossRefGoogle Scholar
  3. Arnold, I. C., Dehzad, N., Reuter, S., Martin, H., Becher, B., Taube, C., & Müller, A. (2011). Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. The Journal of Clinical Investigation, 121(8), 3088–3093.PubMedCrossRefGoogle Scholar
  4. Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., & Khan, M. T. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe, 17(5), 690–703.CrossRefGoogle Scholar
  5. Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1–13.CrossRefGoogle Scholar
  6. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478–486.PubMedCrossRefGoogle Scholar
  7. Blaser, M. J. (2006). Who are we?: Indigenous microbes and the ecology of human diseases. EMBO Reports, 7(10), 956–960.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blaser, M. J. (2016). Antibiotic use and its consequences for the normal microbiome. Science, 352(6285), 544–545. Scholar
  9. Byrne, C. S., Chambers, E. S., Morrison, D. J., & Frost, G. (2015). The role of short chain fatty acids in appetite regulation and energy homeostasis. International Journal of Obesity, 39(9), 1331.PubMedCrossRefGoogle Scholar
  10. Carmody, R. N., Gerber, G. K., Luevano, J. M., Jr., Gatti, D. M., Somes, L., Svenson, K. L., & Turnbaugh, P. J. (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe, 17(1), 72–84.CrossRefGoogle Scholar
  11. Cavalcante, J. J. V., Vargas, C., Nogueira, E. M., Vinagre, F., Schwarcz, K., Baldani, J. I., Ferreira, P. C. G., & Hemerly, A. S. (2007). Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. Journal of Experimental Botany, 58, 673–686.CrossRefGoogle Scholar
  12. Chen, W., Liu, F., Ling, Z., Tong, X., & Xiang, C. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One, 7(6), e39743.PubMedPubMedCentralCrossRefGoogle Scholar
  13. D’Argenio, V., & Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta, 451, 97–102.CrossRefGoogle Scholar
  14. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., & Biddinger, S. B. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Devaraj, S., Hemarajata, P., & Versalovic, J. (2013). The human gut microbiome and body metabolism: Implications for obesity and diabetes. Clinical Chemistry, 59(4), 617–628.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dewulf, E. M., et al. (2011). Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 22, 712–722.PubMedCrossRefGoogle Scholar
  17. Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., & Rosenbaum, M. (2013). The long-term stability of the human gut microbiota. Science, 341(6141), 1237439.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D., Xia, H., Xu, X., Jie, Z., & Su, L. (2015). Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nature Communications, 6, 6528.PubMedCrossRefGoogle Scholar
  19. Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews. Microbiology, 15, 579–590. Scholar
  20. Fischer, D., Pfitzner, B., Schmid, M., Simoes-Araujo, J. L., Reis, V. M., Pereira, W., Ormeno-Orrillo, E., Hai, B., Hofmann, A., Schloter, M., Martinez-Romero, E., Baldani, J. I., & Hartmann, A. (2012). Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane(Saccharum sp.). Plant and Soil, 356, 83–99.CrossRefGoogle Scholar
  21. Ghannoum, M. A., Jurevic, R. J., Mukherjee, P. K., Cui, F., Sikaroodi, M., Naqvi, A., & Gillevet, P. M. (2010). Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens, 6(1), e1000713.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., & Verbeke, K. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology, 14(8), 491.Google Scholar
  23. Glöckner, F. O., Stal, L. J., Sandaa, R. A., et al. (2012). Marine microbial diversity and its role in ecosystem functioning and environmental change. In J. B. Calewaert & N. McDonough (Eds.), Marine board position paper 17 (pp. 1–84). Ostend: Marine Board-ESF.Google Scholar
  24. Haque, M. M., Merchant, M., Kumar, P. N., Dutta, A., & Mande, S. S. (2017). First-trimester vaginal microbiome diversity: A potential indicator of preterm delivery risk. Scientific Reports, 7(1), 16145.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Inceoglu, O., Abu Al-Soud, W., Salles, J. F., Semenov, A. V., & van Elsas, J. D. (2011). Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One, 6, 11.CrossRefGoogle Scholar
  26. Islam, K. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T., & Yokota, A. (2011). Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology, 141(5), 1773–1781.PubMedCrossRefGoogle Scholar
  27. Jones, M. L., Ganopolsky, J. G., Martoni, C. J., Labbé, A., & Prakash, S. (2014). Emerging science of the human microbiome. Gut Microbes, 5(4), 446–457.PubMedCrossRefGoogle Scholar
  28. Kabat, A. M., Srinivasan, N., & Maloy, K. J. (2014). Modulation of immune development and function by intestinal microbiota. Trends in Immunology, 35(11), 507–517.PubMedCrossRefGoogle Scholar
  29. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Vonmering, C., & Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal, 6, 1378–1390.PubMedCrossRefGoogle Scholar
  30. Knights, D., Silverberg, M. S., Weersma, R. K., Gevers, D., Dijkstra, G., Huang, H., Tyler, A. D., Van Sommeren, S., Imhann, F., Stempak, J. M., & Huang, H. (2014). Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Medicine, 6(12), 107.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kort, R., Caspers, M., van de Graaf, A., van Egmond, W., Keijser, B., & Roeselers, G. (2014). Shaping the oral microbiota through intimate kissing. Microbiome, 2(1), 41.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H., & Shi, W. (2007). Interspecies interactions within oral microbial communities. Microbiology and Molecular Biology Reviews, 71(4), 653–670.PubMedCrossRefGoogle Scholar
  33. Laprise, C., Shahul, H. P., Madathil, S. A., Thekkepurakkal, A. S., Castonguay, G., Varghese, I., Shiraz, S., Allison, P., Schlecht, N. F., Rousseau, M. C., & Franco, E. L. (2016). Periodontal diseases and risk of oral cancer in southern India: Results from the HeNCe life study. International Journal of Cancer, 139(7), 1512–1519.PubMedCrossRefGoogle Scholar
  34. Mandal, R. S., Saha, S., & Das, S. (2015). Metagenomic surveys of gut microbiota. Genomics, Proteomics & Bioinformatics, 13(3), 148–158.CrossRefGoogle Scholar
  35. Marion, E., Song, O. R., Christophe, T., Babonneau, J., Fenistein, D., Eyer, J., Letournel, F., Henrion, D., Clere, N., Paille, V., & Guérineau, N. C. (2014). Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell, 157(7), 1565–1576.PubMedCrossRefGoogle Scholar
  36. Martinez, F. D. (2014). The human microbiome. Early life determinant of health outcomes. Annals of the American Thoracic Society, 11(Suppl 1), S7–S12.PubMedPubMedCentralCrossRefGoogle Scholar
  37. McLoughlin, R. M., & Mills, K. H. (2011). Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. The Journal of Allergy and Clinical Immunology, 127(5), 1097–1107.PubMedCrossRefGoogle Scholar
  38. Mira, A., Pushker, R., & Rodríguez-Valera, F. (2006). The Neolithic revolution of bacterial genomes. Trends in Microbiology, 14(5), 200–206.PubMedCrossRefGoogle Scholar
  39. Mira, P. L., Cabrera, R. R., Ocon, S., Costales, P., Parra, A., Suarez, A., Moris, F., Rodrigo, L., Mira, A., & Collado, M. C. (2015 Feb 1). Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. Journal of gastroenterology., 50(2), 167–179.Google Scholar
  40. Mirmonsef, P., Hotton, A. L., Gilbert, D., Burgad, D., Landay, A., Weber, K. M., Cohen, M., Ravel, J., & Spear, G. T. (2014). Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One, 9(7), e102467.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mukherjee, P. K., Chandra, J., Retuerto, M., Sikaroodi, M., Brown, R. E., Jurevic, R., Salata, R. A., Lederman, M. M., Gillevet, P. M., & Ghannoum, M. A. (2014). Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 10(3), e1003996.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Musilova, S., Rada, V., Vlkova, E., & Bunesova, V. (2014). Beneficial effects of human milk oligosaccharides on gut microbiota. Beneficial Microbes, 5(3), 273–283.PubMedCrossRefGoogle Scholar
  43. Naik, S., Bouladoux, N., Wilhelm, C., Molloy, M. J., Salcedo, R., Kastenmuller, W., Deming, C., Quinones, M., Koo, L., Conlan, S., & Spencer, S. (2012). Compartmentalized control of skin immunity by resident commensals. Science, 337(6098), 1115–1119.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Novak, N., Haberstok, J., Bieber, T., & Allam, J. P. (2008). The immune privilege of the oral mucosa. Trends in Molecular Medicine, 14(5), 191–198.PubMedCrossRefGoogle Scholar
  45. Nunn, K. L., Wang, Y. Y., Harit, D., Humphrys, M. S., Ma, B., Cone, R., Ravel, J., & Lai, S. K. (2015). Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. MBio, 6(5), e01084–e01015.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ochoa-Hueso, R. (2017). Global change and the soil microbiome: a human-health perspective. Frontiers in Ecology and Evolution, 5, 71. Scholar
  47. Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z., Abe, F., & Osawa, R. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiology, 16(1), 90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Oh, J., Byrd, A. L., Park, M., Kong, H. H., & Segre, J. A. (2016). NISC Comparative Sequencing Program. Temporal stability of the human skin microbiome. Cell, 165(4), 854–866.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Paul, D., Manna, S., & Mandal, S. M. (2018). Antibiotics associated disorders and post-biotics induced rescue in gut health. Current Pharmaceutical Design, 24(7), 821–829.PubMedCrossRefGoogle Scholar
  50. Petrosino, J. F. (2018 Dec). The microbiome in precision medicine: The way forward. Genome Medicine, 10(1), 12.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Qin, J., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.PubMedCrossRefGoogle Scholar
  52. Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S., McCulle, S. L., Karlebach, S., Gorle, R., Russell, J., Tacket, C. O., & Brotman, R. M. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4680–4687.CrossRefGoogle Scholar
  53. Salazar, G., & Sunagawa, S. (2017). Marine microbial diversity. Current Biology, 27, R431–R510.CrossRefGoogle Scholar
  54. Samuel, B. S. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Saulnier, D. M., Spinler, J. K., Gibson, G. R., & Versalovic, J. (2009). Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Current Opinion in Biotechnology, 20(2), 135–141.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Serna-Chavez, H. M., Fierer, N., & van Bodegom, P. M. (2013). Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 22, 1162–1172.CrossRefGoogle Scholar
  57. Sessitsch, A., Hardoim, P., Doring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., Rahalkar, M., Hurek, T., Sarkar, A., Bodrossy, L., van Overbeek, L., Brar, D., van Elsas, J. D., & Reinhold-Hurek, B. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25, 28–36.PubMedCrossRefGoogle Scholar
  58. Shen, Q., Zhao, L., & Tuohy, K. M. (2012). High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro. European Journal of Nutrition, 51, 693–705.PubMedCrossRefGoogle Scholar
  59. Sherwin, E., Rea, K., Dinan, T. G., & Cryan, J. F. (2016). A gut (microbiome) feeling about the brain. Current Opinion in Gastroenterology, 32(2), 96–102.PubMedCrossRefGoogle Scholar
  60. Siddiqui, H., Nederbragt, A. J., Lagesen, K., Jeansson, S. L., & Jakobsen, K. S. (2011). Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiology, 11(1), 244.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Siddiqui, H., Nederbragt, A. J., Lagesen, K., Jeansson, S. L., & Jakobsen, K. S. (2011). Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol, 11(1), 244.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8, 779–790.PubMedCrossRefGoogle Scholar
  63. Sinha, R., Ahn, J., Sampson, J. N., Shi, J., Yu, G., Xiong, X., Hayes, R. B., & Goedert, J. J. (2016). Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One, 11(3), e0152126.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pacific Journal of Allergy and Immunology, 34(4), 249–264.PubMedGoogle Scholar
  65. Sullivan, S., Schanler, R. J., Kim, J. H., Patel, A. L., Trawöger, R., Kiechl-Kohlendorfer, U., Chan, G. M., Blanco, C. L., Abrams, S., Cotten, C. M., & Laroia, N. (2010). An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. The Journal of Pediatrics, 156(4), 562–567.PubMedCrossRefGoogle Scholar
  66. Tedersoo, L., Bahram, M., Cajthaml, T., Põlme, S., Hiiesalu, I., Anslan, S., Harend, H., Buegger, F., Pritsch, K., Koricheva, J., & Abarenkov, K. (2016). Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. The ISME Journal, 10, 346–362.PubMedCrossRefGoogle Scholar
  67. Teixeira, L., Peixoto, R. S., Cury, J. C., Sul, W. J., Pellizari, V. H., Tiedje, J., & Rosado, A. S. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4, 989–1001.PubMedCrossRefGoogle Scholar
  68. Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes, 1(3), 148–163.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Tojo, R., Suárez, A., Clemente, M. G., de los Reyes-Gavilán, C. G., Margolles, A., Gueimonde, M., & Ruas-Madiedo, P. (2014). Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 20(41), 15163.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Turner, T. R., & James, E. K. (2013). Poole PS. Genome Biology, 14, 209 Scholar
  71. Underhill, D. M., & Iliev, I. D. (2014). The mycobiota: Interactions between commensal fungi and the host immune system. Nature Reviews. Immunology, 14, 405–416.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vayssier-Taussat, M., Albina, E., Citti, C., Cosson, J. F., Jacques, M. A., Lebrun, M. H., Le Loir, Y., Ogliastro, M., Petit, M. A., Roumagnac, P., & Candresse, T. (2014). Shifting the paradigm from pathogens to pathobiome: New concepts in the light of meta-omics. Frontiers in Cellular and Infection Microbiology, 4, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Verdu, E. F., Gallipeau, H. J., & Jabri, B. (2015). Novel players in coeliac disease pathogenesis: Role of the gut microbiota. Nature Reviews. Gastroenterology & Hepatology, 12, 497–506.CrossRefGoogle Scholar
  74. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10, 828–840.PubMedCrossRefGoogle Scholar
  75. Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71–82.CrossRefGoogle Scholar
  76. Wintermute, E. H., & Silver, P. A. (2010). Emergent cooperation in microbial metabolism. Molecular Systems Biology, 6(1), 407.PubMedPubMedCentralGoogle Scholar
  77. Wu, G. D., & Lewis, J. D. (2013). Analysis of the human gut microbiome and association with disease. Clinical Gastroenterology and Hepatology, 11(7), 774–777.PubMedCrossRefGoogle Scholar
  78. Wu, X., et al. (2010). Molecular characterisation of the faecal microbiota in patients with type II diabetes. Current Microbiology, 61, 69–78.PubMedCrossRefGoogle Scholar
  79. Yarandi, S. S., Peterson, D. A., Treisman, G. J., Moran, T. H., & Pasricha, P. J. (2016 Apr). Modulatory effects of gut microbiota on the central nervous system: How gut could play a role in neuropsychiatric health and diseases. Journal of Neurogastroenterology and Motility, 22(2), 201.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Yonogi, S., Matsuda, S., Kawai, T., Yoda, T., Harada, T., Kumeda, Y., Gotoh, K., Hiyoshi, H., Nakamura, S., Kodama, T., & Iida, T. (2014). BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infection and Immunity, 82(6), 2390–2399.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zeller, G., Tap, J., Voigt, A. Y., Sunagawa, S., Kultima, J. R., Costea, P. I., Amiot, A., Böhm, J., Brunetti, F., Habermann, N., & Hercog, R. (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular Systems Biology, 10(11), 766.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Debarati Paul
    • 1
  • Sangeeta Choudhury
    • 2
  • Sudeep Bose
    • 1
    Email author
  1. 1.Amity UniversityNoidaIndia
  2. 2.Research DepartmentSir Ganga Ram HospitalNew DelhiIndia

Personalised recommendations