Advertisement

Regular Symmetry Breaking Operators \({\widetilde {\mathbb {A}}}_{{\lambda },{\nu },{\delta \varepsilon }}^{{i,j}}\) from Iδ(i, λ) to Jε(j, ν)

  • Toshiyuki Kobayashi
  • Birgit Speh
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)

Abstract

In this chapter we apply the general results developed in Chapter  5.

References

  1. 31.
    T. Kobayashi, F-method for symmetry breaking operators. Differ. Geom. Appl. 33, 272–289 (2014). Special issue “The Interaction of Geometry and Representation Theory. Exploring New Frontiers” (in honor of Michael Eastwood’s 60th birthday)Google Scholar
  2. 34.
    T. Kobayashi, Residue formula for regular symmetry breaking operators, in Contemp. Math., vol. 714 (Amer. Math. Soc., Province, RI, 2018), pp. 175–193 http://doi.org/10.1090/com/714/14380. Available also at arXiv:1709.05035. http://arxiv.org/abs/1709.05035
  3. 35.
    T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry Breaking Operators for Differential Forms on Spheres. Lecture Notes in Math., vol. 2170 (Springer, 2016), iv+192 pp. ISBN: 978-981-10-2657-7. http://dx.doi.org/10.1007/978-981-10-2657-7
  4. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. http://dx.doi.org/10.1090/memo/1126 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations