Advertisement

Differential Symmetry Breaking Operators

  • Toshiyuki Kobayashi
  • Birgit Speh
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)

Abstract

In this chapter, we analyze the space
$$\displaystyle {\operatorname {Diff}}_{G'} (I_{\delta }(V,\lambda )|{ }_{G'},J_{\varepsilon }(W,\nu )) $$
of differential symmetry breaking operators between principal series representations of G = O(n + 1, 1) and G′ = O(n, 1) for arbitrary \(V \in \widehat {O(n)}\) and \(W \in \widehat {O(n-1)}\) with [V : W]≠0.

References

  1. 7.
    N. Conze-Berline, M. Duflo, Sur les représentations induites des groupes semi-simples complexes. Compos. Math. 34, 307–336 (1977)zbMATHGoogle Scholar
  2. 13.
    I.M. Gel’fand, M.A. Naı̆mark, Unitary Representations of Classical Groups. Trudy Mat. Inst. Steklov., vol. 36 (Izdat. Nauk SSSR, 1950), 288 pp.Google Scholar
  3. 29.
    T. Kobayashi, Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17, 523–546 (2012)MathSciNetCrossRefGoogle Scholar
  4. 35.
    T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry Breaking Operators for Differential Forms on Spheres. Lecture Notes in Math., vol. 2170 (Springer, 2016), iv+192 pp. ISBN: 978-981-10-2657-7. http://dx.doi.org/10.1007/978-981-10-2657-7
  5. 37.
    T. Kobayashi, B. Ørsted, Analysis on the minimal representation of O(p, q), III. Ultrahyperbolic equations on \(\mathbb {R}^{p-1,q-1}\). Adv. Math. 180, 551–595 (2003). http://dx.doi.org/10.1016/S0001-8708(03)00014-8
  6. 38.
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285, 1796–1852 (2015). http://dx.doi.org/10.1016/j.aim.2015.08.020 MathSciNetCrossRefGoogle Scholar
  7. 40.
    T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. I. General theory and F-method. Selecta Math. (N.S.) 22, 801–845 (2016). http://dx.doi.org/10.1007/s00029-015-0207-9 MathSciNetCrossRefGoogle Scholar
  8. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. http://dx.doi.org/10.1090/memo/1126 MathSciNetCrossRefGoogle Scholar
  9. 52.
    J. Peetre, Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations