Regular Symmetry Breaking Operators

  • Toshiyuki Kobayashi
  • Birgit Speh
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)


Let Iδ(V, λ) be a principal series representation of G = O(n + 1, 1) realized in the Fréchet space \(C^{\infty }(G/P, {\mathcal {V}}_{\lambda ,\delta })\), and Jε(W, ν) that of G′ = O(n, 1) realized in \(C^{\infty }(G'/P', {\mathcal {W}}_{\nu ,\varepsilon })\) as in Section  2.3.1.


  1. 2.
    A. Aizenbud, D. Gourevitch, Multiplicity one theorem for \((GL_{n+1}({\mathbb {R}}), GL_n({\mathbb {R}}))\). Selecta Math. (N.S.) 15, 271–294 (2009)Google Scholar
  2. 32.
    T. Kobayashi, Shintani functions, real spherical manifolds, and symmetry breaking operators, in Developments and Retrospectives in Lie Theory. Dev. Math., vol. 37 (Springer, 2014), pp. 127–159.
  3. 40.
    T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. I. General theory and F-method. Selecta Math. (N.S.) 22, 801–845 (2016). MathSciNetCrossRefGoogle Scholar
  4. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. MathSciNetCrossRefGoogle Scholar
  5. 57.
    F. Trèves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New York–London, 1967), xvi+624 pp.Google Scholar
  6. 62.
    N.R. Wallach, Real Reductive Groups. I. Pure Appl. Math., vol. 132 (Academic Press, Boston, MA, 1988), xx+412 pp. ISBN: 0-12-732960-9; II, ibid, vol. 132-II (Academic Press, Boston, MA, 1992), xiv+454 pp. ISBN: 978-0127329611Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations