Symmetry Breaking Operators for Principal Series Representations—General Theory

  • Toshiyuki Kobayashi
  • Birgit Speh
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)


In this chapter we discuss important concepts and properties of symmetry breaking operators from principal series representations Iδ(V, λ) of the orthogonal group G = O(n + 1, 1) to Jε(W, ν) of the subgroup G′ = O(n, 1).


  1. 5.
    N. Bergeron, L. Clozel, Spectre automorphe des variétés hyperboliques et applications topologiques, in Astérisque, vol. 303 (Soc. Math. France, 2005), xx+218 pp.Google Scholar
  2. 10.
    M. Burger, J.-S. Li, P. Sarnak, Ramanujan duals and automorphic spectrum. Bull. Am. Math. Soc. (N.S.) 26, 253–257 (1992)MathSciNetCrossRefGoogle Scholar
  3. 21.
    A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holography. Progr. Math., vol. 275 (Birkhäuser Verlag, Basel, 2009)Google Scholar
  4. 24.
    A.W. Knapp, D.A. Vogan, Jr., Cohomological Induction and Unitary Representations. Princeton Math. Ser., vol. 45 (Princeton Univ. Press, Princeton, NJ, 1995), xx+948 pp. ISBN: 978-0-691-03756-6Google Scholar
  5. 27.
    T. Kobayashi, Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds \(U(p,q;{\mathbb {F}})/U(p-m,q;{\mathbb {F}})\). Mem. Amer. Math. Soc., vol. 462 (Amer. Math. Soc., Providence, RI, 1992), 106 pp. ISBN: 978-0-8218-2524-2.
  6. 30.
    T. Kobayashi, F-method for constructing equivariant differential operators, in Geometric Analysis and Integral Geometry, Contemp. Math., vol. 598 (Amer. Math. Soc., Providence, RI, 2013), pp. 139–146. Google Scholar
  7. 33.
    T. Kobayashi, A program for branching problems in the representation theory of real reductive groups, in Representations of Lie Groups. In Honor of David A. Vogan, Jr. on his 60th Birthday. Progr. Math., vol. 312 (Birkhäuser, 2015), pp. 277–322.
  8. 34.
    T. Kobayashi, Residue formula for regular symmetry breaking operators, in Contemp. Math., vol. 714 (Amer. Math. Soc., Province, RI, 2018), pp. 175–193 Available also at arXiv:1709.05035.
  9. 35.
    T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry Breaking Operators for Differential Forms on Spheres. Lecture Notes in Math., vol. 2170 (Springer, 2016), iv+192 pp. ISBN: 978-981-10-2657-7.
  10. 38.
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285, 1796–1852 (2015). MathSciNetCrossRefGoogle Scholar
  11. 39.
    T. Kobayashi, T. Oshima, Finite multiplicity theorems for induction and restriction. Adv. Math. 248, 921–944 (2013). MathSciNetCrossRefGoogle Scholar
  12. 40.
    T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. I. General theory and F-method. Selecta Math. (N.S.) 22, 801–845 (2016). MathSciNetCrossRefGoogle Scholar
  13. 41.
    T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. II. Rankin–Cohen operators for symmetric pairs. Selecta Math. (N.S.) 22, 847–911 (2016). MathSciNetCrossRefGoogle Scholar
  14. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. MathSciNetCrossRefGoogle Scholar
  15. 55.
    B. Sun, C.-B. Zhu, Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175, 23–44 (2012). MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations