Advertisement

Appendix II: Restriction to \(\overline G=SO(n+1,1)\)

  • Toshiyuki Kobayashi
  • Birgit Speh
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)

Abstract

So far we have been working with symmetry breaking for a pair of the orthogonal groups (O(n + 1, 1), O(n, 1)). On the other hand, the Gross–Prasad conjectures (Chapters  11 and  13) are formulated for special orthogonal groups rather than orthogonal groups. In this chapter, we explain how to translate the results for (G, G′) = (O(n + 1, 1), O(n, 1)) to those for the pair of special orthogonal groups \((\overline {G},\overline {G'})=(SO(n+1,1), SO(n,1))\).

References

  1. 9.
    A. Borel, N.R. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups: Second edition. Math. Surveys Monogr., vol. 67 (Amer. Math. Soc., Providence, RI, 2000), xviii+260 pp.; First ed., Ann. of Math. Stud., vol. 94 (Princeton Univ. Press, Princeton, NJ, 1980), xvii+388 pp.Google Scholar
  2. 11.
    D.H. Collingwood, Representations of Rank One Lie Groups. Res. Notes in Math., vol. 137 (Pitman (Advanced Publishing Program), Boston, MA, 1985), vii+244 pp.Google Scholar
  3. 16.
    T. Hirai, On irreducible representations of the Lorentz group of n-th order. Proc. Jpn. Acad. 38, 258–262 (1962). https://projecteuclid.org/euclid.pja/1195523378 MathSciNetCrossRefGoogle Scholar
  4. 25.
    A.W. Knapp, G.J. Zuckerman, Classification of irreducible tempered representations of semisimple groups. Ann. Math. (2) 116, 389–455 (1982); II, ibid, 457–501Google Scholar
  5. 35.
    T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry Breaking Operators for Differential Forms on Spheres. Lecture Notes in Math., vol. 2170 (Springer, 2016), iv+192 pp. ISBN: 978-981-10-2657-7. http://dx.doi.org/10.1007/978-981-10-2657-7
  6. 39.
    T. Kobayashi, T. Oshima, Finite multiplicity theorems for induction and restriction. Adv. Math. 248, 921–944 (2013). http://dx.doi.org/10.1016/j.aim.2013.07.015 MathSciNetCrossRefGoogle Scholar
  7. 42.
    T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups. Mem. Amer. Math. Soc., vol. 238 (Amer. Math. Soc., Providence, RI, 2015), v+112 pp. ISBN: 978-1-4704-1922-6. http://dx.doi.org/10.1090/memo/1126 MathSciNetCrossRefGoogle Scholar
  8. 43.
    T. Kobayashi, B. Speh, Symmetry breaking for orthogonal groups and a conjecture by B. Gross and D. Prasad, in Geometric Aspects of the Trace Formula, Simons Symposia, ed. by W. Müller et al. (Springer, 2018), pp. 245–266. https://doi.org/10.1007/978-3-319-94833-1_8. Available also at arXiv:1702.00263. http://arxiv.org/abs/1702.00263 Google Scholar
  9. 50.
    R.P. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups. Math. Surveys Monogr., vol. 31 (Amer. Math. Soc., Providence, RI, 1989), pp. 101–170Google Scholar
  10. 55.
    B. Sun, C.-B. Zhu, Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175, 23–44 (2012). http://dx.doi.org/10.4007/annals.2012.175.1.2 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations