Advertisement

Appendix I: Irreducible Representations of G = O(n + 1, 1), θ-stable Parameters, and Cohomological Induction

  • Toshiyuki Kobayashi
  • Birgit Speh
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2234)

Abstract

In Appendix I, we give a classification of irreducible admissible representations of G = O(n + 1, 1) in Theorem 14.36.

References

  1. 4.
    M.W. Baldoni Silva, A.W. Knapp, Unitary representations induced from maximal parabolic subgroups. J. Funct. Anal. 69, 21–120 (1986)MathSciNetCrossRefGoogle Scholar
  2. 9.
    A. Borel, N.R. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups: Second edition. Math. Surveys Monogr., vol. 67 (Amer. Math. Soc., Providence, RI, 2000), xviii+260 pp.; First ed., Ann. of Math. Stud., vol. 94 (Princeton Univ. Press, Princeton, NJ, 1980), xvii+388 pp.Google Scholar
  3. 11.
    D.H. Collingwood, Representations of Rank One Lie Groups. Res. Notes in Math., vol. 137 (Pitman (Advanced Publishing Program), Boston, MA, 1985), vii+244 pp.Google Scholar
  4. 16.
    T. Hirai, On irreducible representations of the Lorentz group of n-th order. Proc. Jpn. Acad. 38, 258–262 (1962). https://projecteuclid.org/euclid.pja/1195523378 MathSciNetCrossRefGoogle Scholar
  5. 24.
    A.W. Knapp, D.A. Vogan, Jr., Cohomological Induction and Unitary Representations. Princeton Math. Ser., vol. 45 (Princeton Univ. Press, Princeton, NJ, 1995), xx+948 pp. ISBN: 978-0-691-03756-6Google Scholar
  6. 26.
    T. Kobayashi, Proper action on a homogeneous space of reductive type. Math. Ann. 285, 249–263 (1989). https://doi.org/10.1007/BF01443517 MathSciNetCrossRefGoogle Scholar
  7. 27.
    T. Kobayashi, Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds \(U(p,q;{\mathbb {F}})/U(p-m,q;{\mathbb {F}})\). Mem. Amer. Math. Soc., vol. 462 (Amer. Math. Soc., Providence, RI, 1992), 106 pp. ISBN: 978-0-8218-2524-2. http://www.ams.org/books/memo/0462/
  8. 59.
    D.A. Vogan, Jr., Representations of Real Reductive Lie Groups. Progr. Math., vol. 15 (Birkhäuser, Boston, MA, 1981), xvii+754 pp.Google Scholar
  9. 61.
    D.A. Vogan, Jr., G.J. Zuckerman, Unitary representations with nonzero cohomology. Compos. Math. 53, 51–90 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toshiyuki Kobayashi
    • 1
    • 2
  • Birgit Speh
    • 3
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Kavli IPMUKashiwaJapan
  3. 3.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations