Advertisement

Nanocomposite Materials Properties of Aminophenylsilsesquioxanes

  • R. M. LaineEmail author
  • K. Takahasi
  • R. Tamaki
  • J. Choi
  • S. G. Kim
  • C. Brick
  • M. Z. Asuncion
  • E. Chetioui
  • S. Sulaiman
  • R. Basheer
Chapter

Abstract

A series of aminophenylsilsesquioxanes were synthesized and cross-linked with a set of epoxy resins to form 3-D epoxy resins with completely defined interfaces. The objectives of this work were to make materials with very low coefficients of thermal expansions (CTEs) such that these materials could be used for flip-chip underfill in the manufacture of chips on printed circuit boards. Related polyimides were made as oxygen barrier materials. We were able to make epoxy resin hybrid composites with CTEs of ≈30 ppm/°C. Likewise with polyimides we were able to make composite resins with oxygen transmission rates of 3–5 ± 0.5 cc·20 μm/m2·day·atm in films that were only 0.5 mm thick.

Keywords

Hybrid materials Flip-chip underfill Low-viscosity epoxy resins Composite oxygen barrier materials 

Notes

Acknowledgments

The authors would like to thank Delphi Inc., Kuraray Ltd., Matsushita Electric, and AFRL Wright Patterson Air Force Base through subcontract from Mayaterials on SBIR Contract Number F33615 03M 5018 for support of this work.

References

  1. 1.
    Voronkov MG, Lavrent’yev VI (1982) Polyhedral oligosilsesquioxanes and their Homo derivatives. Top Curr Chem 102:199–236CrossRefGoogle Scholar
  2. 2.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRefGoogle Scholar
  3. 3.
    Provatas A, Matisons JG (1997) Synthesis and applications of silsesquioxanes. Trends Polym Sci 5:327–333Google Scholar
  4. 4.
    Loy DA, Shea KJ (1995) Bridged Polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev 95:1431–1442CrossRefGoogle Scholar
  5. 5.
    Lichtenhan J (1996) Silsesquioxane-based polymers. In: Salmone JC (ed) Polymeric materials encyc, vol 10. CRC Press, N.Y, pp 7768–7777Google Scholar
  6. 6.
    Laine RM (2005) Nano-building blocks based on the [OSiO1.5]8 silsesquioxanes. J Mater Chem 15:3725–3744CrossRefGoogle Scholar
  7. 7.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88:633–643CrossRefGoogle Scholar
  8. 8.
    Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741CrossRefGoogle Scholar
  9. 9.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], [(c-C7H13)6Si6O7(OH)4]. Organometallics 10:2526–2528CrossRefGoogle Scholar
  10. 10.
    Maschmeyer T, Klunduk MC, Martin CM, Shephard DS, Thomas JM, Johnson BFG (1997) Modelling the active sites of heterogeneous titanium-centred epoxidation catalysts with soluble silsesquioxane analogues. Chem Commun:1847–1848Google Scholar
  11. 11.
    Feher FJ, Blanski RL (1992) Olefin polymerization by vanadium-containing silsesquioxanes: synthesis of a dialkyl-oxo-vanadium(V) complex that initiates ethylene polymerization. J Am Chem Soc 114:5886–5887CrossRefGoogle Scholar
  12. 12.
    Feher FJ, Budzichowski TA (1995) Silsesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14:3239–3253CrossRefGoogle Scholar
  13. 13.
    Severn JR, Duchateau R, van Santen RA, Ellis DD, Spek AL (2002) Homogeneous models for chemically tethered silica-supported olefin polymerization catalysts. Organometallics 21:4–6CrossRefGoogle Scholar
  14. 14.
    Duchateau R, Abbenhuis HCL, van Santen RA, Meetsma A, Thiele SK-H, van Tol MFH (1998) Half-Sandwich titanium complexes stabilized by a novel Silsesquioxane ligand: soluble model systems for silica-grafted olefin polymerization catalysts. Organometallics 17:5222–5224CrossRefGoogle Scholar
  15. 15.
    Maxim N, Magusin PCMM, Kooyman PJ, van Wolput JHMC, van Santen RA, Abbenhuis HCL (2002) Synthesis and characterization of microporous Fe-Si-O materials with tailored iron content from silsesquioxane precursors. J Phys Chem B 106:2203–2206CrossRefGoogle Scholar
  16. 16.
    Bonhomme C, Toledano P, Livage MJ, Bonhomme-Coury L. Studies of octameric vinylsilasilsesquioxane by carbon-13 and silicon-29 cross polarization magic angle spinning and inversion recovery cross polarization nuclear magnetic resonance spectroscopy. J Chem Soc Dalton Trans. 1997, 1617–26Google Scholar
  17. 17.
    Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Angew Chem Int Ed 42:3488CrossRefGoogle Scholar
  18. 18.
    Bassindale AR, Parker DJ, Pourny M, Taylor PG, Horton PN, Hursthouse MB (2004) Fluoride ion entrapment in octasilsesquioxane cages as models for ion entrapment in zeolites. Further examples, x-ray crystal structure studies, and investigations into how and why they may be formed. Organometallics 23:4400–4405CrossRefGoogle Scholar
  19. 19.
    Tsuchida A, Bolln C, Sernetz FG, Frey H, Mülhaupt R (1997) Ethene and propene copolymers containing Silsesquioxane side groups. Macromolecules 30:2818–2824CrossRefGoogle Scholar
  20. 20.
    Lichtenhan JD, Vu HQ, Carter JA, Gilman JW, Feher FJ (1993) Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 26:2141–2142CrossRefGoogle Scholar
  21. 21.
    Gilman JW, Schlitzer DS, Lichtenhan JD (1996) Low earth orbit resistant siloxane copolymers. J Appl Polym Sci 60:591–596CrossRefGoogle Scholar
  22. 22.
    Brunsvold AL, Minton TK, Gouzman I, Grossman E, Gonzalez RI (2004) An investigation of the resistance of POSS polyimide to atomic oxygen attack. High Perform Polym 16:303–318CrossRefGoogle Scholar
  23. 23.
    Tomczak SJ, Marchant D, Svejda S, Minton TK, Brunsvold AL, Gouzman I, Grossman E, Schatz GC, Troya D, Sun L, Gonzalez RI, Properties and improved space survivability of POSS (Polyhedral Oligomeric Silsesquioxane) polyimides. Private communication from S. TomczakGoogle Scholar
  24. 24.
    Weidner R, Zeller N, Deubzer B, Frey V. Organooligosilsesquioxanes. U.S. Patent 5,047,492, 1991Google Scholar
  25. 25.
    Dathe S, Popowski E, Sonnek G, Feiher T, Jancke H, Schelm U, Euro. Patent 0,348,705 A1 1989Google Scholar
  26. 26.
    Freyer C, Wolferseder J, Peetz U, Euro. Patent 0,624, 691 A1 1993Google Scholar
  27. 27.
    Calzaferri G (1996) Silsesquioxanes. In: Corriu R, Jutzi P (eds) Tailor-made silicon-oxygen compounds, from molecules to materials. Publ. Friedr. Vieweg & Sohn mbH, Braunshweig, pp 149–169Google Scholar
  28. 28.
    Hong B, Thoms TPS, Murfee HJ, Lebrun HJ (1997) Highly branched dendritic macromolecules with core polyhedral silsesquioxane functionalities. Inorg Chem 36:6146–6147CrossRefGoogle Scholar
  29. 29.
    Feher FJ, Wyndham KD (1998) Amine and ester-substituted silsesquioxanes; synthesis, characterization and use as a core for starburst dendrimers. Chem Commun:323–324Google Scholar
  30. 30.
    Dvornic PR, Hartmann-Thompson C, Keinath SE, Hill EJ (2004) Organic-inorganic polyamidoamine (PAMAM) dendrimer-polyhedral oligosilsesquoixane (POSS) nanohybrids. Macromolecules 37:7818–7831CrossRefGoogle Scholar
  31. 31.
    Sellinger A, Tamaki R, Laine RM, Ueno K, Tanabe H, Williams E, Jabbour GE (2005) Solution processable nanocomposites based on silsesquioxane cores for use in organic light emitting diodes (OLEDS). Mater Res Soc Symp Proc 847:399–403Google Scholar
  32. 32.
    Lo MY, Ueno K, Tanabe H, Sellinger A (2006) Silsesquioxane-based nanocomposite dendrimers with photoluminescent and charge transport properties. Chem Rec 6:157–168CrossRefGoogle Scholar
  33. 33.
    Waddon AJ, Coughlin EB (2003) Crystal structure of polyhedral oligomeric silsequioxane (POSS) nano-materials: a study by x-ray diffraction and electron microscopy. Chem Mater 15:4555–4561CrossRefGoogle Scholar
  34. 34.
    Deng J, Farmer-Creely CE, Viers BD, Esker AR (2004) Unique rodlike surface morphologies in trisilanolcyclohexyl polyhedral oligomeric silsesquioxane films. Langmuir 20:2527–2530CrossRefGoogle Scholar
  35. 35.
    Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124:15194–15195CrossRefGoogle Scholar
  36. 36.
    Sellinger A, Laine RM, Chu V, Viney C (1994) Palladium and platinum catalyzed coupling reactions of allyloxy aromatics with hydridosilanes and hydridosiloxanes: novel liquid crystalline/organosilane materials. J Polym Sci A Polym Chem 32:3069–3089CrossRefGoogle Scholar
  37. 37.
    Sellinger A, Laine RM (1996) Silsesquioxanes as synthetic platforms. Thermally and photo curable inorganic/organic hybrids. Macromolecules 29:2327–2330CrossRefGoogle Scholar
  38. 38.
    Sellinger A, Laine RM (1996) Silsesquioxanes as synthetic platforms. III. Photocurable, liquid epoxides as inorganic/organic hybrid precursors. Chem Mater 8:1592–1593CrossRefGoogle Scholar
  39. 39.
    Zhang C, Laine RM (1996) Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic/organic hybrid species. J Organomet Chem 521:199–201CrossRefGoogle Scholar
  40. 40.
    Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J Am Chem Soc 120:8380–8391CrossRefGoogle Scholar
  41. 41.
    Zhang C, Laine RM (2000) Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8. Octa (3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. J Am Chem Soc 122:6979–6988CrossRefGoogle Scholar
  42. 42.
    Tamaki R, Tanaka Y, Asuncion MZ, Choi J, Laine RM (2001) Octa(aminophenyl)silses-quioxane as a nanoconstruction site. J Am Chem Soc 123:12416–12417CrossRefGoogle Scholar
  43. 43.
    Laine RM, Tamaki R, Choi J. Well-defined nanosized building blocks for organic/inorganic nanocomposites. WO 02/100867 A1 2002Google Scholar
  44. 44.
    Tamaki R, Choi J, Laine RM (2003) A polyimide nanocomposite from Octa(aminophenyl)-silsesquioxane. Chem Mater 15:793–797CrossRefGoogle Scholar
  45. 45.
    Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from Aminophenylsilsesquioxanes. Chem Mater 15:3365–3375CrossRefGoogle Scholar
  46. 46.
    Choi J, Kim SG, Laine RM (2004) Organic/inorganic hybrid epoxy nanocomposites from Aminophenylsilsesquioxanes. Macromolecules 37:99–109CrossRefGoogle Scholar
  47. 47.
    Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core shell rubber particles; a three component hybrid system. Macromolecules 37:3267–3276CrossRefGoogle Scholar
  48. 48.
    Laine RM, Choi J, Lee I (2001) Organic-inorganic nanocomposites with completely defined interfacial interactions. Adv Mater 13:800–803CrossRefGoogle Scholar
  49. 49.
    Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa-(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 15:5666–5682CrossRefGoogle Scholar
  50. 50.
    Takahashi K, Sulaiman S, Katzenstein JM, Snoblen S, Laine RM (2006) New aminophenylsilsesquioxanes, synthesis, properties and epoxy nanocomposites. Aust J Chem 59:564–570CrossRefGoogle Scholar
  51. 51.
    Lin EK, Zhang CX, Wu WL, Laine RM. Materials characterization of model epoxy-functionalized silsesquioxanes as potential underfill encapsulants. Proc Int Symp Adv Packag Mater: Process Prop Interfaces 1999, 63–66Google Scholar
  52. 52.
    Sulaiman S, Brick CM, De Sana CM, Katzenstein JM, Laine RM, Basheer RA. Tailoring the global properties of nanocomposites. Epoxy resins with very low coefficients of thermal expansion. Macromol. web published 15-Jul-2006Google Scholar
  53. 53.
    Benicewicz BC, Smith ME, Earls JD, Duran RS, Setz SM, Douglas P (1998) Magnetic field orientation of liquid crystalline epoxy thermosets. Macromolecules 31(15):4730–4738CrossRefGoogle Scholar
  54. 54.
    Tsuchida K, Bell JP (2000) A new epoxy/episulfide resin system for coating applications: curing mechanism and properties. Int J Adhes Adhes 20(6):449–456CrossRefGoogle Scholar
  55. 55.
    Farren C, Akatsuka M, Takezawa Y, Itoh Y (2001) Thermal and mechanical properties of liquid crystalline epoxy resins as a function of mesogen concentration. Polymer 42(4):1507–1514CrossRefGoogle Scholar
  56. 56.
    Su W-FA (1993) Thermoplastic and thermoset main chain liquid crystal polymers prepared from biphenyl mesogens. J Polym Sci Polym Chem 31(13):3251–3256CrossRefGoogle Scholar
  57. 57.
    Carfagna C, Amendola E, Giamberini M, D’Amore A, Priola A, Malucelli G (1999) The effect of prepolymer composition of amino-hardened liquid crystalline epoxy resins on physical properties of cured thermoset. Macromol Symp 148:197CrossRefGoogle Scholar
  58. 58.
    Lee JY, Jang J, Hwang SS, Hong SM, Kim KU (1998) Synthesis and curing of liquid crystalline epoxy resins based on 4,4′-biphenol. Polymer 39(24):6121–6126CrossRefGoogle Scholar
  59. 59.
    Wong CP, Vincent MB, Shi S (1998) Fast-flow underfill encapsulant: flow rate and coefficient of thermal expansion. IEEE Trans Comp Pack Manuf Tech A 21(2):360CrossRefGoogle Scholar
  60. 60.
    Katz HS (1987) Handbook of fillers for plastics. Van Nostrand Reinhold, New YorkGoogle Scholar
  61. 61.
    Miyagawa H, Rich MJ, Drzal LT (2004) Amine-cured epoxy/clay nanocomposites. II. The effect of the nanoclay aspect ratio. J Polym Sci Polym Phys 42(23):4391–4400CrossRefGoogle Scholar
  62. 62.
    Zhang Z, Fan L (2002) Development of environmentally friendly nonanhydride no-flow underfills. IEEE Trans Comp Pack Manuf Tech A 25(1):140–147CrossRefGoogle Scholar
  63. 63.
    Takahashi K, Sulaiman S, Katzenstein JM, Snoblen S, Laine RM (2006) New Aminophenylsilsesquioxanes, synthesis, properties and epoxy nanocomposites. Aust J Chem 59:564–570CrossRefGoogle Scholar
  64. 64.
    Asuncion MZ, Laine RM (2007) Silsesquioxane barrier materials. Macromolecules 40:555–562CrossRefGoogle Scholar
  65. 65.
    Eval Americas Technical Bulletin No. 110 Barrier properties of eval resins (2000)Google Scholar
  66. 66.
    Leterrier Y (2003) Durability of nanosized oxygen-barrier coatings on polymers. Prog Mater Sci 48:1–55CrossRefGoogle Scholar
  67. 67.
    Hu YS, Prattipati V, Mehta S, Schiraldi DS, Hiltner A, Baer E (2005) Improving gas barrier of PET by blending with aromatic polyamides. Polymer 46(2685)CrossRefGoogle Scholar
  68. 68.
    Hiltner A, Liu RYF, Hu YS, Baer E (2005) Oxygen transport as a solid state structure probe for polymeric materials: a review. J Polym Sci B Phys 43:1047CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. M. Laine
    • 1
    Email author
  • K. Takahasi
    • 1
  • R. Tamaki
    • 1
  • J. Choi
    • 1
  • S. G. Kim
    • 1
  • C. Brick
    • 1
  • M. Z. Asuncion
    • 1
  • E. Chetioui
    • 1
  • S. Sulaiman
    • 1
  • R. Basheer
    • 2
  1. 1.Departments of Materials Science and Engineering, Chemistry and The Macromolecular Science and Engineering CenterUniversity of MichiganAnn ArborUSA
  2. 2.Delphi Research LaboratoriesShelby TownshipUSA

Personalised recommendations