Advertisement

Borylated Polystyrenes as Versatile Functional Materials

  • Frieder JäkleEmail author
Chapter

Abstract

The use of inorganic and organometallic compounds as building blocks of functional polymeric materials has developed into a flourishing research direction. Boron-containing polymers in particular are attracting tremendous attention for applications ranging from precursors to high-performance ceramics, flame retardants, electrolytes for lithium-ion batteries, supramolecular materials, optical and electronic materials, sensors and bioimaging agents, and polymer-supported reagents and catalysts. New synthetic approaches have been introduced in recent years that allow for controlled functionalization of polymeric materials with structurally diverse organoborane moieties, utilizing either polymer modification procedures or the direct polymerization of borane monomers. In this chapter we summarize our efforts toward the discovery of new functional materials derived from organoborane hybrid polymers, focusing on polystyrene-based systems.

Keywords

Boron Organoborane polymers Polystyrene Self-assembly 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grants CHE-1362460 and CHE-1609043. F. J. thanks all his current and former group members who contributed to our research on boron-containing polymers discussed in here.

References

  1. 1.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jap 88:633–643CrossRefGoogle Scholar
  2. 2.
    Matsumi N, Chujo Y (2008) π-conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polym J 40:77–89CrossRefGoogle Scholar
  3. 3.
    Tanaka K, Chujo Y (2012) Advanced luminescent materials based on organoboron polymers. Macromol Rapid Commun 33:1235–1255PubMedCrossRefGoogle Scholar
  4. 4.
    Jäkle F (2006) Lewis acidic organoboron polymers. Coord Chem Rev 250:1107–1121CrossRefGoogle Scholar
  5. 5.
    Jäkle F (2010) Advances in the synthesis of organoborane polymers for optical, electronic and sensory applications. Chem Rev 110:3985–4022PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Abd-El-Aziz AS, Carraher CE Jr, Pittman CU Jr, Zeldin M (eds) (2007) Macromolecules containing metal and metal-like elements, Boron-Containing Polymers, vol 8. Wiley, HobokenGoogle Scholar
  7. 7.
    Dash BP, Satapathy R, Maguire JA, Hosmane NS (2011) Polyhedral boron clusters in materials science. New J Chem 35:1955–1972CrossRefGoogle Scholar
  8. 8.
    Brooks WLA, Sumerlin BS (2016) Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem Rev 116:1375–1397PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Helten H (2016) B=N units as part of extended π-conjugated oligomers and polymers. Chem Eur J 22:12972–12982PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jäkle F (2005) Borylated polyolefins and their application. J Inorg Organomet Polym Mater 15:293–307CrossRefGoogle Scholar
  11. 11.
    Cheng F, Jäkle F (2011) Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym Chem 2:2122–2132CrossRefGoogle Scholar
  12. 12.
    Qin Y, Cheng G, Sundararaman A, Jäkle F (2002) Well-defined boron-containing polymeric Lewis acids. J Am Chem Soc 124:12672–12673PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Qin Y, Cheng G, Achara O, Parab K, Jäkle F (2004a) A new route to organoboron polymers via highly selective polymer modification reactions. Macromolecules 37:7123–7131CrossRefGoogle Scholar
  14. 14.
    Qin Y, Sukul V, Pagakos D, Cui C, Jäkle F (2005) Preparation of organoboron block copolymers via ATRP of silicon and boron-functionalized monomers. Macromolecules 38:8987–8990CrossRefGoogle Scholar
  15. 15.
    Qin Y, Cui C, Jäkle F (2007) Silylated initiators for the efficient preparation of borane-end-functionalized polymers via ATRP. Macromolecules 40:1413–1420CrossRefGoogle Scholar
  16. 16.
    Qin Y, Cui C, Jäkle F (2008) Tris(1-pyrazolyl)borate (scorpionate) functionalized polymers as scaffolds for metallopolymers. Macromolecules 41:2972–2974CrossRefGoogle Scholar
  17. 17.
    Yamaguchi S, Akiyama S, Tamao K (2001) Colorimetric fluoride sensing by boron-containing π -electron systems. J Am Chem Soc 123:11372–11375PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wade CR, Broomsgrove AEJ, Aldridge S, Gabbai FP (2010) Fluoride ion complexation and sensing using organoboron compounds. Chem Rev 110:3958–3984PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Miyata M, Chujo Y (2002) π-conjugated organoboron polymer as an anion sensor. Polym J 34:967–969CrossRefGoogle Scholar
  20. 20.
    Chen P, Jäkle F (2011) Highly luminescent, electron-deficient bora-cyclophanes. J Am Chem Soc 133:20142–20145PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chen PK, Lalancette RA, Jäkle F (2012) π-expanded borazine: an ambipolar conjugated B-π -N macrocycle. Angew Chem Int Ed 51:7994–7998CrossRefGoogle Scholar
  22. 22.
    Parab K, Venkatasubbaiah K, Jäkle F (2006) Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies. J Am Chem Soc 128:12879–12885PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Parab K, Doshi A, Cheng F, Jäkle F (2011) Synthesis and characterization of luminescent polystyrene derivatives with sterically protected fluorenyl- and carbazolylborane moieties. Macromolecules 44:5961–5967CrossRefGoogle Scholar
  24. 24.
    Parab K, Jäkle F (2009) Synthesis, characterization, and anion binding of redox-active triarylborane polymers. Macromolecules 42:4002–4007CrossRefGoogle Scholar
  25. 25.
    Park MH, Kim T, Huh JO, Do Y, Lee MH (2011) Luminescent polyethylene with side-chain triarylboranes: synthesis and fluoride sensing properties. Polymer 52:1510–1514CrossRefGoogle Scholar
  26. 26.
    Sung WY, Park MH, Park JH, Eo M, Yu M-S, Do Y, Lee MH (2012) Triarylborane-functionalized polynorbornenes: direct polymerization and signal amplification in fluoride sensing. Polymer 53:1857–1863CrossRefGoogle Scholar
  27. 27.
    Cheng F, Bonder EM, Jäkle F (2013a) Electron-deficient triarylborane block copolymers: synthesis by controlled free radical polymerization and application in the detection of fluoride ions. J Am Chem Soc 135:17286–17289PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rao YL, Amarne H, Wang SN (2012) Photochromic four-coordinate N,C-chelate boron compounds. Coord Chem Rev 256:759–770CrossRefGoogle Scholar
  29. 29.
    Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201CrossRefGoogle Scholar
  30. 30.
    Qin Y, Pagba C, Piotrowiak P, Jäkle F (2004b) Luminescent organoboron quinolate polymers. J Am Chem Soc 126:7015–7018PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Qin Y, Kiburu I, Shah S, Jäkle F (2006) Synthesis and characterization of organoboron quinolate polymers with tunable luminescence properties. Macromolecules 39:9041–9048CrossRefGoogle Scholar
  32. 32.
    Cheng F, Jäkle F (2010) RAFT polymerization of luminescent boron quinolate monomers. Chem Commun 46:3717–3719CrossRefGoogle Scholar
  33. 33.
    Cheng F, Bonder EM, Doshi A, Jäkle F (2012a) Organoboron star polymers via arm-first RAFT polymerization: synthesis, luminescent behavior, and aqueous self-assembly. Polym Chem 3:596–600CrossRefGoogle Scholar
  34. 34.
    Cheng F, Bonder EM, Jäkle F (2012b) Luminescent boron quinolate block copolymers via RAFT polymerization. Macromolecules 45:3078–3085CrossRefGoogle Scholar
  35. 35.
    Cheng F, Bonder EM, Salem S, Jäkle F (2013b) Pyridine-functionalized luminescent organoboron quinolate block copolymers as versatile building blocks for assembled nanostructures. Macromolecules 46:2905–2915CrossRefGoogle Scholar
  36. 36.
    Amat-Guerri F, Liras M, Carrascoso ML, Sastre R (2003) Methacrylate-tethered analogs of the laser dye PM567 - synthesis, copolymerization with methyl methacrylate and photostability of the copolymers. Photochem Photobiol 77:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    López Arbeloa F, Bañuelos Prieto J, López Arbeloa I, Costela A, García-Moreno I, Gómez C, Amat-Guerri F, Liras M, Sastre R (2003) Photophysical and lasing properties of new analogs of the boron-dipyrromethene laser dye pyrromethene 567 incorporated into or covalently bounded to solid matrices of poly(methyl methacrylate). Photochem Photobiol 78:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Costela A, García-Moreno I, Gómez C, Amat-Guerri F, Liras M, Sastre R (2003) Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene•BF2 complexes incorporated into solid matrices of poly(methyl methacrylate). Appl Phys B Lasers Opt 76:365–369CrossRefGoogle Scholar
  39. 39.
    Nagai A, Miyake J, Kokado K, Nagata Y, Chujo Y (2008) Highly luminescent bodipy-based organoboron polymer exhibiting supramolecular self-assemble structure. J Am Chem Soc 130:15276–15278PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nagai A, Kokado K, Miyake J, Chujo Y (2009) Highly luminescent nanoparticles: self-assembly of well-defined block copolymers by π –π stacked bodipy dyes as only a driving force. Macromolecules 42:5446–5452CrossRefGoogle Scholar
  41. 41.
    Nagai A, Kokado K, Miyake J, Chujo Y (2010) Thermoresponsive fluorescent water-soluble copolymers containing bodipy dye: inhibition of Haggregation of the bodipy units in their copolymers by LCST. J Polym Sci A Polym Chem 48:627–634CrossRefGoogle Scholar
  42. 42.
    Paris R, Quijada-Garrido I, Garcia O, Liras M (2011) Bodipy-conjugated thermo-sensitive fluorescent polymers based on 2-(2-methoxyethoxy)ethyl methacrylate. Macromolecules 44:80–86CrossRefGoogle Scholar
  43. 43.
    Novoa S, Paquette JA, Barbon SM, Maar RR, Gilroy JB (2016) Side-chain boron difluoride formazanate polymers via ring-opening metathesis polymerization. J Mater Chem C 4:3987–3994CrossRefGoogle Scholar
  44. 44.
    Liu ZQ, Marder TB (2008) B-N versus C-C: how similar are they? Angew Chem Int Ed 47:242–244CrossRefGoogle Scholar
  45. 45.
    Bosdet MJD, Piers WE (2009) B-N as a C-C substitute in aromatic systems. Can J Chem 87:8–29CrossRefGoogle Scholar
  46. 46.
    Campbell PG, Marwitz AJV, Liu SY (2012) Recent advances in azaborine chemistry. Angew Chem Int Ed 51:6074–6092CrossRefGoogle Scholar
  47. 47.
    Abbey ER, Lamm AN, Baggett AW, Zakharov LN, Liu SY (2013) Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids. J Am Chem Soc 135:12908–12913PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Xu SM, Zakharov LN, Liu SY (2011) A 1,3-dihydro-1,3-azaborine debuts. J Am Chem Soc 133:20152–20155PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schafer M, Beattie NA, Geetharani K, Schafer J, Ewing WC, Krahfuss M, Horl C, Dewhurst RD, Macgregor SA, Lambert C, Braunschweig H (2016) Synthesis of functionalized 1,4-azaborinines by the cyclization of di-tert-butyliminoborane and alkynes. J Am Chem Soc 138:8212–8220PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bosdet MJD, Piers WE, Sorensen TS, Parvez M (2007) 10a-aza-10b-Borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties. Angew Chem Int Ed 46:4940–4943CrossRefGoogle Scholar
  51. 51.
    Wang XY, Wang JY, Pei J (2015a) BN heterosuperbenzenes: synthesis and properties. Chem Eur J 21:3528–3539PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Krieg M, Reicherter F, Haiss P, Strobele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF (2015) Construction of an internally B N –doped nanographene molecule. Angew Chem Int Ed 54:8284–8286CrossRefGoogle Scholar
  53. 53.
    Wang XY, Zhang F, Schellharnmer KS, Machata P, Ortmann F, Cuniberti G, Fu YB, Hunger J, Tang RZ, Popov AA, Berger R, Mullen K, Feng XL (2016) Synthesis of NBN-type zigzag-edged polycyclic aromatic hydrocarbons: 1,9-diaza-9a-boraphenalene as a structural motif. J Am Chem Soc 138:11606–11615PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Baggett AW, Guo F, Li B, Liu S-Y, Jäkle F (2015) Regioregular synthesis of azaborine oligomers and a polymer with a syn conformation stabilized by N-H···π interactions. Angew Chem Int Ed 54:11191–11195CrossRefGoogle Scholar
  55. 55.
    Wang X-Y, Zhuang F-D, Wang J-Y, Pei J (2015b) Incorporation of polycyclic azaborine compounds into polythiophene-type conjugated polymers for organic field-effect transistors. Chem Commun 51:17532–17535CrossRefGoogle Scholar
  56. 56.
    Su K, Remsen EE, Thompson HM, Sneddon LG (1991) Syntheses and properties of poly(B-vinylborazine) and poly(styrene-co-Bvinylborazine) copolymers. Macromolecules 24:3760–3766CrossRefGoogle Scholar
  57. 57.
    Jackson LA, Allen CW (1992) Organoborazines. iii. Homo- and copolymerization of p-vinylphenylcyclotriborazines. J Polym Sci A Polym Chem 30:577–581CrossRefGoogle Scholar
  58. 58.
    Wan WM, Baggett AW, Cheng F, Lin H, Lamm AN, Liu SY, Jäkle F (2016) Synthesis by free radical polymerization and properties of BNpolystyrene and BN-poly(vinylbiphenyl). Chem Commun 52:13616–13619CrossRefGoogle Scholar
  59. 59.
    Thiedemann B, Gliese PJ, Hoffmann J, Lawrence PG, Sönnichsen FD, Staubitz A (2017) High molecular weight poly(N-methyl-Bvinylazaborine) – a semi-inorganic B–N polystyrene analogue. Chem Commun 53:7258–7261CrossRefGoogle Scholar
  60. 60.
    van de Wouw HL, Lee JY, Klausen RS (2017) Gram-scale free radical polymerization of an azaborine vinyl monomer. Chem Commun 53:7262–7265CrossRefGoogle Scholar
  61. 61.
    Hoffmann AK, Thomas WB (1959) The synthesis of p-vinylphenylboronic acid and some of its derivatives. J Am Chem Soc 81:580–582CrossRefGoogle Scholar
  62. 62.
    Gilman H, Moore LO (1958) Some studies on the preparation of arylboronic acids. J Am Chem Soc 80:3609–3611CrossRefGoogle Scholar
  63. 63.
    Cui CZ, Bonder EM, Qin Y, Jäkle F (2010a) Synthesis and solvent-dependent micellization of the amphiphilic block copolymer poly(styreneboronic acid)-block-polystyrene. J Polym Sci A Polym Chem 48:2438–2445CrossRefGoogle Scholar
  64. 64.
    Kim KT, Cornelissen J, Nolte RJM, van Hest JCM (2009) A polymersome nanoreactor with controllable permeability induced by stimuli-responsive block copolymers. Adv Mater 21:2787–2791CrossRefGoogle Scholar
  65. 65.
    Vancoillie G, Hoogenboom R (2016a) Synthesis and polymerization of boronic acid containing monomers. Polym Chem 7:5484–5495CrossRefGoogle Scholar
  66. 66.
    Vancoillie G, Hoogenboom R (2016b) Responsive boronic acid-decorated (co)polymers: from glucose sensors to autonomous drug delivery. Sensors-Basel 16:1736PubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chudzinski MG, Chi YC, Taylor MS (2011) Borinic acids: a neglected class of organoboron compounds for recognition of diols in aqueous solution. Aust J Chem 64:1466–1469CrossRefGoogle Scholar
  68. 68.
    Wan W-M, Cheng F, Jäkle F (2014) A borinic acid polymer with fluoride ion- and thermo-responsive properties that are tunable over a wide temperature range. Angew Chem Int Ed 53:8934–8938CrossRefGoogle Scholar
  69. 69.
    Wan WM, Zhou P, Cheng F, Sun XL, Lv XH, Li KK, Xu H, Sun M, Jäkle F (2015) Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies. Soft Matter 11:7159–7164PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Cheng F, Wan WM, Zhou Y, Sun XL, Bonder EM, Jäkle F (2015) Borinic acid block copolymers: new building blocks for supramolecular assembly and sensory applications. Polym Chem 6:4650–4656CrossRefGoogle Scholar
  71. 71.
    Sablong R, van der Vlugt JI, Thomann R, Mecking S, Vogt D (2005) Disperse amphiphilic submicron particles as non-covalent supports for cationic homogeneous catalysts. Adv Synth Catal 347:633–636CrossRefGoogle Scholar
  72. 72.
    Matsumi N, Sugai K, Miyake M, Ohno H (2006) Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 39:6924–6927CrossRefGoogle Scholar
  73. 73.
    Berven BM, Oviasuyi RO, Klassen RJ, Idacavage M, Gillies ER, Ragogna PJ (2013) Self-crosslinking borate anions for the production of tough uv-cured polyelectrolyte surfaces. J Polym Sci A Polym Chem 51:499–508CrossRefGoogle Scholar
  74. 74.
    Cui C, Bonder EM, Jäkle F (2010b) Weakly coordinating amphiphilic organoborate block copolymers. J Am Chem Soc 132:1810–1812PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cui C, Bonder EM, Jäkle F (2009) Organoboronium amphiphilic block copolymers. J Polym Sci Part A: Polym Chem 47:6612–6618CrossRefGoogle Scholar
  76. 76.
    Cui C, Jäkle F (2009) Organoboronium-functionalized polystyrenes as a new class of polycations. Chem Commun 0:2744–2746CrossRefGoogle Scholar
  77. 77.
    Fox PA, Griffin ST, Reichert WM, Salter EA, Smith AB, Tickell MD, Wicker BF, Cioffi EA, Davis JH, Rogers RD, Wierzbicki A (2005) Exploiting isolobal relationships to create new ionic liquids: novel room-temperature ionic liquids based upon (n-alkylimidazole)(amine) BH “boronium” ions. Chem Commun 0:3679–3681CrossRefGoogle Scholar
  78. 78.
    Cui C, Heilmann-Brohl J, Perucha AS, Thomson MD, Roskos HG, Wagner M, Jäkle F (2010c) Redox-active ferrocenylboronium polyelectrolytes with main chain charge-transfer structure. Macromolecules 43:5256–5261CrossRefGoogle Scholar
  79. 79.
    Qin Y, Shipman P, Jäkle F (2012) Self-assembly of borane end-functionalized polystyrene through tris(1-pyrazolyl)borate (Tp) iron(ii) linkages. Macromol Rapid Commun 33:562–567PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Shipman P, Cui C, Lupinska P, Lalancette RA, Sheridan JB, Jäkle F (2013) Nitroxide-mediated controlled free radical polymerization of thechelate monomer tris(2-pyridyl)(4-styryl)borate (StTpyb) and supramolecular assembly via metal complexation. ACS Macro Lett 2:1056–1060CrossRefGoogle Scholar
  81. 81.
    Pawar GM, Lalancette RA, Bonder EM, Sheridan JB, Jäkle F (2015) ROMP-derived pyridylborate block copolymers: self-assembly, pHresponsive properties, and metal-containing nanostructures. Macromolecules 48:6508–6515CrossRefGoogle Scholar
  82. 82.
    Pawar GM, Sheridan JB, Jäkle F (2016) Pyridylborates as a new type of robust scorpionate ligand: from metal complexes to polymeric materials. Eur J Inorg Chem:2227–2235CrossRefGoogle Scholar
  83. 83.
    Cui C, Lalancette RA, Jäkle F (2012) The elusive tripodal tris(2-pyridyl)borate ligand: a strongly coordinating tetraarylborate. Chem Commun 48:6930–6932CrossRefGoogle Scholar
  84. 84.
    Cui C, Shipman P, Lalancette RA, Jäkle F (2013) Tris(2-pyridylborate) (Tpyb) metal complexes: synthesis, characterization and formation of extrinsically porous structures with large cylindrical channels. Inorg Chem 52:9440–9447PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryRutgers University-NewarkNewarkUSA

Personalised recommendations