Advertisement

Crystallization Kinetics-Induced Self-Assembly of Inorganic Element Blocks and the Surface-Enhanced Raman Scattering Based on Ag Hierarchical Structures

  • Jinguang Cai
  • Akira Watanabe
Chapter

Abstract

In this chapter, on basis of the concept of element blocks which can be extended to inorganic element blocks consisting of inorganic nano-cores such as inorganic nanoclusters, nanoparticles, and nanocrystals. The self-assembly behaviors and strategies of inorganic element blocks, as well as novel properties of assembly structures applied in high-performance surface-enhanced Raman scattering (SERS) were first briefly introduced. Crystallization behaviors of symmetric and asymmetric polyhedral oligomeric silsesquioxane (POSS) molecules were applied to the formation of unique fractal hierarchical structures of POSS/Ag hybrid films by using a facile spin-coating method, where POSS molecules and Ag nanoparticles have comparable sizes. A mechanism of crystallization kinetics-induced self-assembly of inorganic element blocks was proposed and demonstrated to be a novel universal method for various kinds of POSS molecules, other inorganic nanoparticles, and arbitrary substrates to form a fractal hierarchical structure. Ag fractal hierarchical structures obtained by heat treatment of a POSS/Ag hybrid film showed excellent SERS activity and performed as an effective in situ SERS-active media due to their stable adhesion to the substrate. In addition, an ultra-stable in situ SERS sensor based on Ag hybrid nanoassembly and an in situ SERS detection using a smartphone were also demonstrated. It is expected that the mechanism of crystallization kinetics-induced self-assembly could be extended to other material systems, such as small organic molecules, polymers, salts, atomic clusters, biomolecules, as well as relatively large colloidal particles.

Keywords

Crystallization kinetics-induced self-assembly Inorganic element blocks Surface-enhanced Raman scattering In situ SERS sensor Smartphone sensing 

References

  1. 1.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. B Chem Soc Jpn 88(5):633–643.  https://doi.org/10.1246/bcsj.20150081 CrossRefGoogle Scholar
  2. 2.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458.  https://doi.org/10.1021/cr900137k CrossRefPubMedGoogle Scholar
  3. 3.
    Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25CrossRefGoogle Scholar
  4. 4.
    Gwo S, Chen H-Y, Lin M-H, Sun L, Li X (2016) Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem Soc Rev 45(20):5672–5716.  https://doi.org/10.1039/C6CS00450D CrossRefPubMedGoogle Scholar
  5. 5.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677.  https://doi.org/10.1021/jp026731y CrossRefGoogle Scholar
  6. 6.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870.  https://doi.org/10.1021/jp0516846 CrossRefPubMedGoogle Scholar
  7. 7.
    Polavarapu L, Mourdikoudis S, Pastoriza-Santos I, Perez-Juste J (2015) Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 17(20):3727–3762.  https://doi.org/10.1039/C5CE00112A CrossRefGoogle Scholar
  8. 8.
    Li L-s, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1(7):349–351.  https://doi.org/10.1021/nl015559r CrossRefGoogle Scholar
  9. 9.
    Zhou J, Yang Y, Zhang C-Y (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115(21):11669–11717.  https://doi.org/10.1021/acs.chemrev.5b00049 CrossRefPubMedGoogle Scholar
  10. 10.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753.  https://doi.org/10.1021/jp806791s CrossRefGoogle Scholar
  11. 11.
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742.  https://doi.org/10.1002/adma.201000260 CrossRefPubMedGoogle Scholar
  12. 12.
    Boles MA, Engel M, Talapin DV (2016) Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev 116(18):11220–11289.  https://doi.org/10.1021/acs.chemrev.6b00196 CrossRefPubMedGoogle Scholar
  13. 13.
    Hashemi SM, Jagodič U, Mozaffari MR, Ejtehadi MR, Muševič I, Ravnik M (2017) Fractal nematic colloids. Nat Commun 8:14026.  https://doi.org/10.1038/ncomms14026 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Afshinmanesh F, Curto AG, Milaninia KM, van Hulst NF, Brongersma ML (2014) Transparent metallic fractal electrodes for semiconductor devices. Nano Lett 14(9):5068–5074.  https://doi.org/10.1021/nl501738b CrossRefPubMedGoogle Scholar
  15. 15.
    Fan JA, Yeo W-H, Su Y, Hattori Y, Lee W, Jung S-Y, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266.  https://doi.org/10.1038/ncomms4266 CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar Y, Singh S (2015) A compact multiband hybrid fractal antenna for multistandard Mobile wireless applications. Wirel Pers Commun 84(1):57–67.  https://doi.org/10.1007/s11277-015-2593-x CrossRefGoogle Scholar
  17. 17.
    Xu L, Gutbrod SR, Ma Y, Petrossians A, Liu Y, Webb RC, Fan JA, Yang Z, Xu R, Whalen JJ, Weiland JD, Huang Y, Efimov IR, Rogers JA (2015) Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater 27(10):1731–1737.  https://doi.org/10.1002/adma.201405017 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gottheim S, Zhang H, Govorov AO, Halas NJ (2015) Fractal nanoparticle Plasmonics: the Cayley tree. ACS Nano 9(3):3284–3292.  https://doi.org/10.1021/acsnano.5b00412 CrossRefPubMedGoogle Scholar
  19. 19.
    Nicolás-Carlock JR, Carrillo-Estrada JL, Dossetti V (2016) Fractality à la carte: a general particle aggregation model. Sci Rep 6:19505.  https://doi.org/10.1038/srep19505 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang D, Xu Z, Li J, Chen S, Cheng J, Zhang A, Chen S, Miao M (2014) Self-assembly of Amido-ended Hyperbranched polyester films with a highly ordered dendritic structure. ACS Appl Mater Interfaces 6(18):16375–16383.  https://doi.org/10.1021/am504705c CrossRefPubMedGoogle Scholar
  21. 21.
    Li J, Liu B, Li J (2006) Controllable self-assembly of CdTe/poly(N-isopropylacrylamide−acrylic acid) microgels in response to pH stimuli. Langmuir 22(2):528–531.  https://doi.org/10.1021/la052519k CrossRefPubMedGoogle Scholar
  22. 22.
    Sun S, Xu S, Zhang W, Wu P, Zhang W, Zhu X (2013) Cooperative self-assembly and crystallization into fractal patterns by PNIPAM-based nonlinear multihydrophilic block copolymers under alkaline conditions. Polym Chem 4(24):5800–5809.  https://doi.org/10.1039/C3PY00682D CrossRefGoogle Scholar
  23. 23.
    Dong J, Qu S, Zheng H, Zhang Z, Li J, Huo Y, Li G (2014) Simultaneous SEF and SERRS from silver fractal-like nanostructure. Sensors Actuators B Chem 191:595–599.  https://doi.org/10.1016/j.snb.2013.09.088 CrossRefGoogle Scholar
  24. 24.
    Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S (2013) Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv Mater 25(26):3566–3570.  https://doi.org/10.1002/adma.201300888 CrossRefPubMedGoogle Scholar
  25. 25.
    Hou C, Meng G, Huang Q, Zhu C, Huang Z, Chen B, Sun K (2014) Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chem Commun 50(5):569–571.  https://doi.org/10.1039/C3CC46878J CrossRefGoogle Scholar
  26. 26.
    Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core–shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117(7):5002–5069.  https://doi.org/10.1021/acs.chemrev.6b00596 CrossRefGoogle Scholar
  27. 27.
    Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795.  https://doi.org/10.1002/anie.201205748 CrossRefGoogle Scholar
  28. 28.
    Nam J-M, Oh J-W, Lee H, Suh YD (2016) Plasmonic Nanogap-enhanced Raman scattering with nanoparticles. Acc Chem Res 49(12):2746–2755.  https://doi.org/10.1021/acs.accounts.6b00409 CrossRefPubMedGoogle Scholar
  29. 29.
    Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Duyne RPV (2010) Structure−activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910.  https://doi.org/10.1021/ja104174m CrossRefPubMedGoogle Scholar
  30. 30.
    Wu D-Y, Li J-F, Ren B, Tian Z-Q (2008) Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev 37(5):1025–1041.  https://doi.org/10.1039/B707872M CrossRefPubMedGoogle Scholar
  31. 31.
    Lazzari M, Scalarone D, Hoppe CE, Vazquez-Vazquez C, Lòpez-Quintela MA (2007) Tunable Polyacrylonitrile-based micellar aggregates as a potential tool for the fabrication of carbon nanofibers. Chem Mater 19(24):5818–5820.  https://doi.org/10.1021/cm7019894 CrossRefGoogle Scholar
  32. 32.
    Schmelz J, Karg M, Hellweg T, Schmalz H (2011) General pathway toward crystalline-Core micelles with tunable morphology and Corona segregation. ACS Nano 5(12):9523–9534.  https://doi.org/10.1021/nn202638t CrossRefPubMedGoogle Scholar
  33. 33.
    Mihut AM, Crassous JJ, Schmalz H, Drechsler M, Ballauff M (2012) Self-assembly of crystalline-coil diblock copolymers in solution: experimental phase map. Soft Matter 8(11):3163–3173.  https://doi.org/10.1039/C2SM06359J CrossRefGoogle Scholar
  34. 34.
    McGrath N, Schacher FH, Qiu H, Mann S, Winnik MA, Manners I (2014) Synthesis and crystallization-driven solution self-assembly of polyferrocenylsilane diblock copolymers with polymethacrylate corona-forming blocks. Polym Chem 5(6):1923–1929.  https://doi.org/10.1039/C3PY01383A CrossRefGoogle Scholar
  35. 35.
    He W-N, Zhou B, Xu J-T, Du B-Y, Fan Z-Q (2012) Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles. Macromolecules 45(24):9768–9778.  https://doi.org/10.1021/ma301267k CrossRefGoogle Scholar
  36. 36.
    Patra SK, Ahmed R, Whittell GR, Lunn DJ, Dunphy EL, Winnik MA, Manners I (2011) Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J Am Chem Soc 133(23):8842–8845.  https://doi.org/10.1021/ja202408w CrossRefPubMedGoogle Scholar
  37. 37.
    Sun L, Petzetakis N, Pitto-Barry A, Schiller TL, Kirby N, Keddie DJ, Boyd BJ, O’Reilly RK, Dove AP (2013) Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules 46(22):9074–9082.  https://doi.org/10.1021/ma401634s CrossRefGoogle Scholar
  38. 38.
    Yu B, Jiang X, Yin J (2014) Size-tunable nanosheets by the crystallization-driven 2D self-assembly of Hyperbranched poly(ether amine) (hPEA). Macromolecules 47(14):4761–4768.  https://doi.org/10.1021/ma500845e CrossRefGoogle Scholar
  39. 39.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173.  https://doi.org/10.1021/cr900201r CrossRefGoogle Scholar
  40. 40.
    Zhang W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38(8):1121–1162.  https://doi.org/10.1016/j.progpolymsci.2013.03.002 CrossRefGoogle Scholar
  41. 41.
    Hirai T, Leolukman M, Jin S, Goseki R, Ishida Y, Kakimoto M-A, Hayakawa T, Ree M, Gopalan P (2009) Hierarchical self-assembled structures from POSS-containing block copolymers synthesized by living anionic polymerization. Macromolecules 42(22):8835–8843.  https://doi.org/10.1021/ma9018944 CrossRefGoogle Scholar
  42. 42.
    Raftopoulos KN, Koutsoumpis S, Jancia M, Lewicki JP, Kyriakos K, Mason HE, Harley SJ, Hebda E, Papadakis CM, Pielichowski K, Pissis P (2015) Reduced phase separation and slowing of dynamics in polyurethanes with three-dimensional POSS-based cross-linking moieties. Macromolecules 48(5):1429–1441.  https://doi.org/10.1021/ma5023132 CrossRefGoogle Scholar
  43. 43.
    Peng J, Xing Y, Xu K, Lin W, Wu J, Yu Z, Zhang Y, Chen M (2015) Fabrication of silsesquioxane-based nano-wrinkled structures by coupling the polymeric surface onto rigid templates assembled from unique deca-silsesquioxane. J Mater Chem C 3(12):2897–2908.  https://doi.org/10.1039/C4TC02720E CrossRefGoogle Scholar
  44. 44.
    Liu F, Zhang Y, Xu L, Zhang W (2015) Morphology-controlled self-assembly of an organic/inorganic hybrid porphyrin derivative containing polyhedral oligomeric silsesquioxane (POSS). Chem-Eur J 21(14):5540–5547.  https://doi.org/10.1002/chem.201405334 CrossRefPubMedGoogle Scholar
  45. 45.
    Li D, Niu Y, Yang Y, Wang X, Yang F, Shen H, Wu D (2015) Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers. Chem Commun 51:8296–8299.  https://doi.org/10.1039/C5CC01338K CrossRefGoogle Scholar
  46. 46.
    Liao W-H, Yang S-Y, Hsiao S-T, Wang Y-S, Li S-M, Ma C-CM, Tien H-W, Zeng S-J (2014) Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interfaces 6(18):15802–15812.  https://doi.org/10.1021/am504342j CrossRefGoogle Scholar
  47. 47.
    Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136(13):4805–4808.  https://doi.org/10.1021/ja412192v CrossRefPubMedGoogle Scholar
  48. 48.
    Li J, Zhou Z, Ma L, Chen G, Li Q (2014) Hierarchical assembly of amphiphilic POSS-Cyclodextrin molecules and azobenzene end-capped polymers. Macromolecules 47(16):5739–5748.  https://doi.org/10.1021/ma501100r CrossRefGoogle Scholar
  49. 49.
    Hou H, Gan Y, Yin J, Jiang X (2014) Multifunctional POSS-based nano-photo-initiator for overcoming the oxygen inhibition of photo-polymerization and for creating self-wrinkled patterns. Adv Mater Interfaces 1(9):1400385.  https://doi.org/10.1002/admi.201400385 CrossRefGoogle Scholar
  50. 50.
    Gan Y, Jiang X, Yin J (2012) Self-wrinkling patterned surface of photocuring coating induced by the fluorinated POSS containing thiol groups (F-POSS-SH) as the reactive nanoadditive. Macromolecules 45(18):7520–7526.  https://doi.org/10.1021/ma301439g CrossRefGoogle Scholar
  51. 51.
    Cai J, Lv C, Watanabe A (2015) Facile preparation of hierarchical structures using crystallization-kinetics driven self-assembly. ACS Appl Mater Interfaces 7(33):18697–18706.  https://doi.org/10.1021/acsami.5b05177 CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Chen H, Dong S, Wang E (2006) Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. J Chem Phys 125(4):044710.  https://doi.org/10.1063/1.2216694 CrossRefGoogle Scholar
  53. 53.
    Zhou Q, Zhao G, Chao Y, Li Y, Wu Y, Zheng J (2007) Charge-transfer induced surface-enhanced Raman scattering in silver nanoparticle assemblies. J Phys Chem C 111(5):1951–1954.  https://doi.org/10.1021/jp067045s CrossRefGoogle Scholar
  54. 54.
    Osawa M, Matsuda N, Yoshii K, Uchida I (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707.  https://doi.org/10.1021/j100099a038 CrossRefGoogle Scholar
  55. 55.
    Liu Y, Demirci A, Zhu H, Cai J, Yamamoto S, Watanabe A, Miyashita T, Mitsuishi M (2016) A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications. J Mater Chem C 4(38):8903–8910.  https://doi.org/10.1039/C6TC02963A CrossRefGoogle Scholar
  56. 56.
    Cogitap Software (2017) Slow Shutter Cam, https://itunes.apple.com/us/app/slow-shutter-cam/id357404131?mt=8. Accessed 23 Jul 2017
  57. 57.
    ImageJ developers (2009) Image J, https://imagej.net/Contributors, https://imagej.nih.gov/ij/. Accessed 23 Jul 2017
  58. 58.
    Michael Steptoe (2017) IJ_Mobile, https://play.google.com/store/apps/details?id=comij_mobile&hl=en. Accessed 23 July2017

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Institute of Materials, China Academy of Engineering PhysicsJiangyouChina

Personalised recommendations