Advertisement

Three-Dimensional Coordination Polymers Composed of Luminescent Lanthanide Element Blocks

  • Yasuchika HasegawaEmail author
  • Takayuki Nakanishi
  • Yuichi Kitagawa
Chapter

Abstract

In this chapter, three-dimensional coordination polymers composed of luminescent lanthanide complexes (lanthanide element blocks: luminescent blocks) and organic joint parts (joint blocks) are introduced. The luminescent blocks are composed of lanthanide ions and low-vibrational frequency hfa (hexafluoroacetylacetonato)-ligand for suppression of vibrational relaxation. The joint blocks are containing phosphine oxide groups, which are attached with lanthanide ions, resulting in formation of asymmetric eight-coordination geometry of lanthanide coordination sites. The three-dimensional coordination polymers with characteristic structure (e.g., liner-typed, zigzag, two-dimensional, three-dimensional, and clustering structures) provide thermostable and strong-luminescence properties. They also show unique photophysical properties (temperature-sensitive and triboluminescence properties). The lanthanide coordination nanoparticles with good dispersibility in water and organic solvents are also applied for fabrication of optical devices. Three-dimensional coordination polymers composed of lanthanide element blocks are expected to open up frontier field of material and polymer science.

Keywords

Coordination polymer Lanthanide Luminescence Complex 

Notes

Acknowledgment

This work was partly supported by Grants-in-Aid for Scientific Research on Innovative Areas of “New Polymeric Materials Based on Element-Blocks (No. 2401)” (24102012) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

  1. 1.
    Shriver DF, Atkins PW (1999) Inorganic chemistry, 3rd edn. Oxford University Press, Oxford, p 320Google Scholar
  2. 2.
    Hasegawa Y, Wada Y et al (2004) Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J Photochem Photobiol C 5:183–202CrossRefGoogle Scholar
  3. 3.
    Hasegawa Y (2014) Photofunctional lanthanoid complexes, coordination polymers, and nanocrystals for future photonic applications. Bull Chem Soc Jpn 87:1029–1057CrossRefGoogle Scholar
  4. 4.
    Hasegawa Y, Yamamuro M et al (2003) Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency. J Phys Chem A 107:1697–1702CrossRefGoogle Scholar
  5. 5.
    Nakamura K, Hasegawa Y et al (2007) Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. J Phys Chem A 111:3029–3037CrossRefGoogle Scholar
  6. 6.
    Miyata K, Hasegawa Y et al (2011) Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures. Chem Eur J 17:521–528CrossRefGoogle Scholar
  7. 7.
    Miyata K, Hasegawa Y et al (2012) Thermostable organo-phosphor: low-vibrational coordination polymers that exhibit different intermolecular interactions. ChemPlusChem 77:277–280CrossRefGoogle Scholar
  8. 8.
    Eliseeva SV, Kuzmina NP et al (2008) Role of the ancillary ligand N,N-Dimethylaminoethanol in the sensitization of Eu and Tb luminescence in dimeric β-Diketonates. J Phys Chem A 112:3614–3626CrossRefGoogle Scholar
  9. 9.
    Trivedi ER, Pecoraro VL et al (2014) Highly emitting near-infrared lanthanide “encapsulated sandwich” metallacrown complexes with excitation shifted toward lower energy. J Am Chem Soc 136:1526–1534CrossRefGoogle Scholar
  10. 10.
    Hirai Y, Hasegawa Y et al (2016) Luminescent europium(III) coordination zippers linked with thiophene-based bridges. Angew Chem Int Ed 55:12059–12062CrossRefGoogle Scholar
  11. 11.
    Hasegawa Y, Tateno S et al (2017) Effective photo- and triboluminescent europium(III) coordination polymers with rigid triangular spacer ligands. Chem Eur J 23:2666–2672CrossRefGoogle Scholar
  12. 12.
    Lee WR et al (2010) Microporous lanthanide-organic frameworks with open metal sites: unexpected sorption propensity and multifunctional properties. Inorg Chem 49:4723–4725CrossRefGoogle Scholar
  13. 13.
    Nakajima A, Hasegawa Y et al (2016) Hyper-stable organo-EuIII luminophore under high temperature for photo-industrial application. Sci Rep 6:24458CrossRefGoogle Scholar
  14. 14.
    Yamamoto M, Hasegawa Y et al (2016) Luminescent Eu(III) coordination polymer cross-linked with Zn(II) complexes. Mater Lett 167:183–187CrossRefGoogle Scholar
  15. 15.
    Nakanishi T, Hasegawa Y et al (2014) Enhancement of optical Faraday effect of nonanuclear Tb(III) complexes. Inorg Chem 53:7635–7641CrossRefGoogle Scholar
  16. 16.
    Wada S, Hasegawa Y et al (2016) The relationship between magneto-optical properties and molecular chirality. NPG Asia Mater 8:e251CrossRefGoogle Scholar
  17. 17.
    Wada S, Hasegawa Y et al (2015) Chiroptical properties of nonanuclear Tb(III) clusters with chiral champhor derivative ligands. e-J Surf Sci 13:31–34Google Scholar
  18. 18.
    Omagari S, Nakanishi T et al (2015) Effective photosensitized energy transfer of Nonanuclear terbium clusters using methyl salicylate derivatives. J Phys Chem A 119:1943–1947CrossRefGoogle Scholar
  19. 19.
    Mitsuishi M, Amao Y et al (2003) Characterization of an ultrathin polymer optode and its application to temperature sensors based on luminescent europium complexes. J Mater Chem 13:2875–2879CrossRefGoogle Scholar
  20. 20.
    Khalil GE, Dalton LR et al (2004) Europium Beta-diketonate temperature sensors: effects of ligands, matrix, and concentration. Rev Sci Instrum 75:192CrossRefGoogle Scholar
  21. 21.
    Katagiri S, Hasegawa Y et al (2004) Thermo-sensitive luminescence based on the Back energy transfer in terbium(III) complexes. Chem Lett 33:1438–1439CrossRefGoogle Scholar
  22. 22.
    Liu Y, Wang M et al (2005) Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass. Appl Phys Lett 286:071907CrossRefGoogle Scholar
  23. 23.
    Tremblay MS, Sames D et al (2007) Cocktails of Tb3+ and Eu3+ complexes: a general platform for the design of ratiometric optical probes. J Am Chem Soc 129:7570–7577CrossRefGoogle Scholar
  24. 24.
    Kerbellec N, Guillou OD et al (2009) An unprecedented family of lanthanide-containing coordination polymers with highly tunable emission properties. Inorg Chem 48:2837–2843CrossRefGoogle Scholar
  25. 25.
    Xiao Y, Yuan J et al (2012) A Ratiometric luminescence probe for highly reactive oxygen species based on lanthanide complexes. Inorg Chem 51:2940–2946CrossRefGoogle Scholar
  26. 26.
    Comby S, Gunnlaugsson T et al (2012) New trick for an old ligand! The sensing of Zn(II) using a lanthanide based ternary Yb(III)-cyclen-8-hydroxyquinoline system as a dual emissive probe for displacement assay. Inorg Chem 51:10158–10168CrossRefGoogle Scholar
  27. 27.
    Miyata K, Hasegawa Y et al (2013) Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew Chem Int Ed 52:6413–6416CrossRefGoogle Scholar
  28. 28.
    Hirai Y, Hasegawa Y et al (2014) Thermo-sensitive luminescent materials composed of Tb(III) and Eu(III) complexes. Mater Lett 130:91–93CrossRefGoogle Scholar
  29. 29.
    Hirai Y, Hasegawa Y et al (2014) Luminescent coordination glass: remarkable morphological strategy for assembled Eu(III) complexes. Inorg Chem 54:4364–4370CrossRefGoogle Scholar
  30. 30.
    Hirai Y, Hasegawa Y et al (2017) Glass transition properties and temperature-sensitive luminescence of lanthanide coordination glasses linked by thienyl, naphthyl, and phenyl bridges with ethynyl group. Bull Chem Soc Jpn 90:322–326CrossRefGoogle Scholar
  31. 31.
    Hatanaka M, Morokuma K et al (2017) Organic linkers control the thermosensitivity of the emission intensities from Tb(III) and Eu(III) in a chameleon polymer. Chem Sci 8:423–429CrossRefGoogle Scholar
  32. 32.
    Wiedemann G, Schmidt F (1895) Ann Phys (Leipzig) 54:604–625Google Scholar
  33. 33.
    Walton AJ (1977) Triboluminescence. Adv Phys 26:887–948CrossRefGoogle Scholar
  34. 34.
    Chen XF, You XZ et al (1999) Triboluminescence and crystal structures of non-ionic europium complexes. J Mater Chem 9:2919–2922CrossRefGoogle Scholar
  35. 35.
    Feffrey GA (1973) Intramolecular hydrogen-bonding in carbohydrate crystal-structures. Carbohydr Res 28:233–241CrossRefGoogle Scholar
  36. 36.
    Hasegawa Y, Kawai T et al (2011) Brilliant triboluminescence of a lanthanide coordination polymer with low-vibrational-frequency and non-centrosymmetric structural networks. Eur J Inorg Chem 32:4978–4984CrossRefGoogle Scholar
  37. 37.
    Hirai Y, Hasegawa Y et al (2017) Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. Angew Chem Int Ed 56:7171–7175CrossRefGoogle Scholar
  38. 38.
    Sweeting LM, Rheingold AL (1987) Crystal disorder and triboluminescence: triethylammonium tetrakis (dibenzoylmethanato)europate. J Am Chem Soc 109:2652–2658CrossRefGoogle Scholar
  39. 39.
    Sage I, Bourhill G (2001) Triboluminescent materials for structural damage monitoring. J Mater Chem 11:231–245CrossRefGoogle Scholar
  40. 40.
    Kataoka H, Hasegawa Y et al (2016) Drastically improved durability and efficiency of silicon solar cells using hyper-stable lanthanide coordination polymer beads. Bull Chem Soc Jpn 89:103–109CrossRefGoogle Scholar
  41. 41.
    Atik SS, Thomas JK (1981) Polymerized microemulsions. J Am Chem Soc 103:4279–4280CrossRefGoogle Scholar
  42. 42.
    Antonietti M, Niel CV (1992) Polymerization in microemulsion. 2. Surface control and functionalization of microparticles. Macromolecules 25:1139–1143CrossRefGoogle Scholar
  43. 43.
    Boutonnet M, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225CrossRefGoogle Scholar
  44. 44.
    Onodera H, Hasegawa Y et al (2014) Thermo-stable lanthanoid coordination nanoparticles composed of luminescent Eu(III) complexes and organic joint ligands using micelle techniques in water. Bull Chem Soc Jpn 87:1386–1390CrossRefGoogle Scholar
  45. 45.
    Hasegawa Y, Fushimi K et al (2016) Luminescent thin films composed of nano-sized europium coordination polymers on glass electrodes. ChemPlusChem 81:187–193CrossRefGoogle Scholar
  46. 46.
    Saji T, Goto M (1991) Formation of organic thin films by electrolysis of surfactants with the ferrocenyl moiety. J Am Chem Soc 113:450–456CrossRefGoogle Scholar
  47. 47.
    Onodera H, Hasegawa Y et al (2016) Acid-protected Eu(III) coordination nanoparticles covered with polystyrene. J Mater Chem C 4:75–81CrossRefGoogle Scholar
  48. 48.
    Onodera H, Hasegawa Y et al (2015) Thermostable nano Luminophores composed of europium ions and organic ligands. e-J Surf Sci Nanotech 13:219–222CrossRefGoogle Scholar
  49. 49.
    Hasegawa Y, Nakanishi T (2015) Luminescent lanthanide coordination polymers for photonic applications. RSC Adv 5:338–353CrossRefGoogle Scholar
  50. 50.
    Hirai Y, Hasegawa Y et al (2016) Organo-lanthanide luminophores bridged by phosphine oxide ligands. J Lumin 170:801–807CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yasuchika Hasegawa
    • 1
    Email author
  • Takayuki Nakanishi
    • 1
  • Yuichi Kitagawa
    • 1
  1. 1.Division of Applied Chemistry, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations