Advertisement

Block Copolymers with Element Blocks: The Metal-Bisterpyridine Linkage

  • Andreas Winter
  • Ulrich S. SchubertEmail author
Chapter

Abstract

In classical block copolymers, the constituent blocks are linked via a covalent bond. In supramolecular copolymers, this connection is replaced by a more labile, in some cases reversible, one – hydrogen bonding, host-guest interaction, and metal-to-ligand complexation represent the most prominent and versatile examples in this respect. The structural modification has a profound impact on the overall material’s properties: The characteristics of the polymeric subunits are retained and combined with the special features of the non-covalent linkage. With respect to block copolymers bridged by a cationic transition metal ion complex, the newly gained properties can go far beyond a (reversible) chemical linkage and might include, e.g., a photo- or magnetochemical behavior. Moreover, the charged nature of the linking complex can change the physical characteristics of the overall block copolymer when compared to a classical covalent counterpart – this may hold true in solution, in the melt as well as in the solid state. These features together allow considering the metal-complex linkage in such assemblies not to be “innocent” but rather to be a very short block or segment on its own. In this chapter, the metal-bisterpyridine linkage within linear copolymer architectures will be highlighted exemplarily. By this, the modularity of metallo-supramacromolecular chemistry, referred to as playing LEGO™ with macromolecules or as using the connection as element block, will be shown.

Keywords

Block copolymers Metallopolymers Self-assembly Supramolecular polymerization Terpyridine complexes 

Notes

Acknowledgment

The authors acknowledge financial support of research by the Deutsche Forschungsgemeinschaft (DFG).

References

  1. 1.
    Yang SK, Ambade AV, Weck M (2011) Main-chain supramolecular block copolymers. Chem Soc Rev 40(1):129–137.  https://doi.org/10.1039/C0CS00073F CrossRefPubMedGoogle Scholar
  2. 2.
    Fustin C-A, Guillet P, Schubert US, Gohy J-F (2007) Metallo-supramolecular block copolymers. Adv Mater 19(13):1665–1673.  https://doi.org/10.1002/adma.200602170 CrossRefGoogle Scholar
  3. 3.
    Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343):1601–1604.  https://doi.org/10.1126/science.278.5343.1601 CrossRefPubMedGoogle Scholar
  4. 4.
    Binder WH, Zirbs R (2007) Hydrogen bonded polymers. Adv Polym Sci 207:7–78.  https://doi.org/10.1007/12_2006_109 CrossRefGoogle Scholar
  5. 5.
    Guo D-S, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41(18):5907–5921.  https://doi.org/10.1039/c2cS35075k CrossRefPubMedGoogle Scholar
  6. 6.
    Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38(4):875–882.  https://doi.org/10.1039/b705458k CrossRefPubMedGoogle Scholar
  7. 7.
    Rauwald U, Scherman OA (2008) Supramolecular block copolymers with cucurbit[8]uril in water. Angew Chem Int Ed 47(21):3950–3953.  https://doi.org/10.1002/anie.200705591 CrossRefGoogle Scholar
  8. 8.
    Gohy J-F (2009) Metallo-supramolecular block copolymer micelles. Coord Chem Rev 253(17–18):2214–2225.  https://doi.org/10.1021/ma012042t CrossRefGoogle Scholar
  9. 9.
    Higuchi M (2016) Metallo-supramolecular polymers: design, function and device application. In: Ji S, Tsuji S (eds) Intelligent Nanosystems for energy, information and biological technologies. Springer, Japan, pp 217–248CrossRefGoogle Scholar
  10. 10.
    Winter A, Schubert US (2016) Synthesis and characterization of metallo-supramolecular polymers. Chem Soc Rev 45(19):5311–5357.  https://doi.org/10.1039/c6cS00182c CrossRefPubMedGoogle Scholar
  11. 11.
    Morgan GT, Burstall FH (1932) Dehydrogenation of pyridine by anhydrous ferric chloride. J Chem Soc 1:20–30.  https://doi.org/10.1039/JR9320000020 CrossRefGoogle Scholar
  12. 12.
    Holyer RH, Hubbard CD, Kettle SFA, Wilkins RG (1966) The kinetics of replacement reactions of complexes of the transition metals with 2,2′,2″-terpyridine. Inorg Chem 5(4):622–625.  https://doi.org/10.1021/ic50038a027 CrossRefGoogle Scholar
  13. 13.
    Irving H, Willimas RJP (1948) Order of stability of metal complexes. Nature 162:746–747.  https://doi.org/10.1038/162746a0 CrossRefGoogle Scholar
  14. 14.
    Meier MAR, Lohmeijer BGG, Schubert US (2003) Relative binding strength of terpyridine model complexes under matrix-assisted laser desorption/ionization mass spectrometry conditions. J Mass Spectrom 38(5):510–516.  https://doi.org/10.1002/jms.463 CrossRefPubMedGoogle Scholar
  15. 15.
    Schubert US, Winter A, Newkome GR (2011) Terpyridine-based materials. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    Chiper M, Meier MAR, Kranenburg JM, Schubert US (2007) New insights into nickel(II), iron(II) and cobalt(II) bis-complex-based metallo-supramolecular polymers. Macromol Chem Phys 208(7):679–689.  https://doi.org/10.1002/macp.200600605 CrossRefGoogle Scholar
  17. 17.
    He Y-J, Tu T-H, Su M-K, Yang C-W, Kong KV, Chan Y-T (2017) Facile construction of metallo-supramolecular poly(3-hexylthiophene)-block-poly(ethylene oxide) diblock copolymers via complementary coordination and their self-assembled nanostructures. J Am Chem Soc 139(11):4218–4224.  https://doi.org/10.1021/jacs.7b01010 CrossRefPubMedGoogle Scholar
  18. 18.
    Mugemana C, Guillet P, Hoeppener S, Schubert US, Fustin C-A, Gohy J-F (2010) Metallo-supramolecular diblock copolymers based on heteroleptic cobalt(III) and nickel(II) bis-terpyridine complexes. Chem Commun 46(8):1296–1298.  https://doi.org/10.1039/b923270b CrossRefGoogle Scholar
  19. 19.
    Williams JAG, Wilkinson AJ, Whittle VL (2008) Light-emitting iridium complexes with tridentate ligands. Dalton Trans :2081–2099.  https://doi.org/10.1039/b716743a
  20. 20.
    Schönle J, Constable EC, Housecroft CE, Prescimone A, Zampese JA (2015) Homoleptic and heteroleptic complexes of chromium(III) containing 4′-diphenylamino-2,2′:6′,2″-terpyridine ligands. Polyhedron 89:182–188.  https://doi.org/10.1016/j.poly.2015.01.015 CrossRefGoogle Scholar
  21. 21.
    Wild A, Winter A, Schlütter F, Schubert US (2011) Advances in the field of π-conjugated 2,2′:6′,2″-terpyridines. Chem Soc Rev 40(3):1459–1511.  https://doi.org/10.1039/c0cS00074d CrossRefPubMedGoogle Scholar
  22. 22.
    Heller M, Schubert US (2003) Syntheses of functionalized 2,2′:6′,2″-terpyridines. Eur J Org Chem 6:947–961.  https://doi.org/10.1002/ejoc.200390150 CrossRefGoogle Scholar
  23. 23.
    Heller M, Schubert US (2002) Functionalized 2,2′-bipyridines and 2,2′:6′,2″-terpyridines via Stille-type cross-coupling procedures. J Org Chem 67(23):8269–8272.  https://doi.org/10.1021/jo0260600 CrossRefPubMedGoogle Scholar
  24. 24.
    Constable EC, Ward MD (1990) Synthesis and co-ordination behaviour of 6,6-bis(2-pyridyl)-2,2′:4,4″:2″,2‴-quaterpyridine; “back-to-back” 2,2′:6′,2″-terpyridine. J Chem Soc Dalton Trans (4):1405–1410.  https://doi.org/10.1039/dt9900001405
  25. 25.
  26. 26.
    Schubert US, Hofmeier H, Newkome GR (2006) Modern terpyridine chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  27. 27.
    Schubert US, Eschbaumer C (2002) Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew Chem Int Ed 41(16):2892–2926.  https://doi.org/10.1002/1521-3773(20020816)41:16<2892::AID-ANIE2892>3.0.CO;2-6 CrossRefGoogle Scholar
  28. 28.
    Schubert US, Eschbaumer C, Hien O, Andres PR (2001) 4′-functionalized 2,2′:6′,2″-terpyridines as building blocks for supramolecular chemistry and nanoscience. Tetrahedron Lett 42(28):4705–4707.  https://doi.org/10.1016/S0040-4039(01)00796-1 CrossRefGoogle Scholar
  29. 29.
    Chiper M, Hoogenboom R, Schubert US (2009) Toward main-chain metallo-terpyridyl supramolecular polymers: the metal does the trick. Macromol Rapid Commun 30(8):565–578.  https://doi.org/10.1002/marc.200800625 CrossRefPubMedGoogle Scholar
  30. 30.
    Yang L, Tan X, Wang Z, Zhang X (2015) Supramolecular polymers: historical development, preparation, characterization and functions. Chem Rev 115(15):7196–7239.  https://doi.org/10.1021/cr500633b CrossRefPubMedGoogle Scholar
  31. 31.
    Whittle GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188.  https://doi.org/10.1038/nmat2966 CrossRefGoogle Scholar
  32. 32.
    Andres PR, Schubert US (2004) New functional polymers and materials based on 2,2′:6′,2″-terpyridine metal complexes. Adv Mater 16(13):1043–1068.  https://doi.org/10.1002/adma.200306518 CrossRefGoogle Scholar
  33. 33.
    Schroot R, Schlotthauer T, Schubert US, Jäger M (2016) Modular assembly of poly(naphthalene diimide) and Ru(II) dyes for an efficient light-induced charge separation in hierarchically controlled polymer architectures. Macromolecules 49(6):2112–2123.  https://doi.org/10.1021/acs.macromol.5b02717 CrossRefGoogle Scholar
  34. 34.
    Schroot R, Schlotthauer T, Jäger M, Schubert US (2017) Hydrophilic poly(naphthalene diimide)-based acceptor-photosensitizer dyads: toward water-processible modular photoredox-active architectures. Macromol Chem Phys 218(6):1600534-n/a.  https://doi.org/10.1002/macp.201600534 CrossRefGoogle Scholar
  35. 35.
    Schlotthauer T, Schroot R, Glover S, Hammarstrom L, Jager M, Schubert US (2017) A multidonor-photosensitizer-multiacceptor Ttriad for long-lived directional charge separation. Phys Chem Chem Phys.  https://doi.org/10.1039/C7CP05593E CrossRefGoogle Scholar
  36. 36.
    Schroot R, Schlotthauer T, Dietzek B, Jäger M, Schubert US (n.d.) Extending long-lived charge separation between donor and acceptor blocks in novel copolymer architectures featuring a sensitizer core. Chem Eur J:n/a-n/a.  https://doi.org/10.1002/chem.201704180 CrossRefGoogle Scholar
  37. 37.
    Hoogenboom R, Schubert US (2006) The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques. Chem Soc Rev 35(7):622–629.  https://doi.org/10.1039/B515911C CrossRefPubMedGoogle Scholar
  38. 38.
    Heller M, Schubert US (2001) Optically active supramolecular poly(L-lactide)s end-capped with terpyridine. Macromol Rapid Commun 22(16):1358–1363.  https://doi.org/10.1002/1521-3927(20011101)22:16<1358::AID-MARC1358>3.0.CO;2-X CrossRefGoogle Scholar
  39. 39.
    Hofmeier H, Hoogenboom R, Wouters MEL, Schubert US (2005) High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. J Am Chem Soc 127(9):2913–2921.  https://doi.org/10.1021/ja042919e CrossRefPubMedGoogle Scholar
  40. 40.
    Winter A, Schubert US (2007) New polyester-based terpyridine macroligands and their blue iron(II) complexes. Macromol Chem Phys 208(18):1956–1964.  https://doi.org/10.1002/macp.200700256 CrossRefGoogle Scholar
  41. 41.
    Heller M, Schubert US (2001) Terpyridines as supramolecular initiators for living polymerization methods. Macromol Symp 177(1):87–96.  https://doi.org/10.1002/1521-3900(200201)177:1<87::AID-MASY87>3.0.CO;2-1 CrossRefGoogle Scholar
  42. 42.
    Pefkianakis EK, Tzanetos NP, Chochos CL, Andreopoulou AK, Kallitsis JK (2009) End-functionalization of semiconducting species with dendronized terpyridine-Ru(II)-terpyridine complexes. J Polym Sci Part A: Polym Chem 47(7):1939–1952.  https://doi.org/10.1002/pola.23289 CrossRefGoogle Scholar
  43. 43.
    Zhou G-C, Harruna II (2005) Synthesis and characterization of bis(2,2′:6′,2″-terpyridine)ruthenium(II)-connected diblock polymers via RAFT polymerization. Macromolecules 38(10):4114–4123.  https://doi.org/10.1021/ma047955c CrossRefGoogle Scholar
  44. 44.
    Zhang L-W, Zhang Y-H, Chen Y-M (2006) Synthesis of bis(2,2′:6′,2″-terpyridine)-terminated telechelic polymers by RAFT polymerization and ruthenium-polymer complexation thereof. Eur Polym J 42(10):2398–2406.  https://doi.org/10.1016/j.eurpolymj.2006.05.017 CrossRefGoogle Scholar
  45. 45.
    Lohmeijer BGG, Schubert US (2004) Expanding the supramolecular polymer LEGO system: nitroxide-mediated living free-radical polymerization as a tool for mono- and telechelic polystyrenes. J Polym Sci Part A: Polym Chem 42(16):4016–4027.  https://doi.org/10.1002/pola.20189 CrossRefGoogle Scholar
  46. 46.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688.  https://doi.org/10.1021/cr990119u CrossRefPubMedGoogle Scholar
  47. 47.
    Lohmeijer BGG, Schubert US (2005) The LEGO toolbox: supramolecular building blocks by nitroxide-mediated controlled radical polymerization. J Polym Sci Part A: Polym Chem 43(24):6331–6344.  https://doi.org/10.1002/pola.20967 CrossRefGoogle Scholar
  48. 48.
    Ott C, Lohmeijer BGG, Wouters D, Schubert US (2006) Terpyridine-terminated homo and diblock copolymer LEGO units by nitroxide-mediated radical polymerization. Macromol Chem Phys 207(16):1439–1449.  https://doi.org/10.1002/macp.200600269 CrossRefGoogle Scholar
  49. 49.
    Gohy J-F, Ott C, Hoeppener S, Schubert US (2009) Multicompartment micelles from a metallo-supramolecular tetrablock quatercopolymer. Chem Commun (40):6038–6040.  https://doi.org/10.1039/b912504c
  50. 50.
    Ott C, Hoogenboom R, Hoeppener S, Wouters D, Gohy J-F, Schubert US (2009) Tuning the morphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles to switchable vesicles. Soft Matter 5(1):84–91.  https://doi.org/10.1039/b813161a CrossRefGoogle Scholar
  51. 51.
    Guillet P, Mugemana C, Stadler FJ, Schubert US, Fustin C-A, Bailly C, Gohy J-F (2009) Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials. Soft Matter 5(18):3409–3411.  https://doi.org/10.1039/b910325b CrossRefGoogle Scholar
  52. 52.
    Ott C, Hoogenboom R, Schubert US (2008) Post-modification of poly(pentafluorostyrene): a versatile “click” method to create well-defined multifunctional graft copolymers. Chem Commun (30):3516–3518.  https://doi.org/10.1039/b807152g
  53. 53.
    Ott C, Ulbricht C, Hoogenboom R, Schubert US (2012) Metallo-supramolecular materials based on amine-grafting onto polypentafluorostyrene. Macromol Rapid Commun 33(6–7):556–561.  https://doi.org/10.1002/marc.201100769 CrossRefPubMedGoogle Scholar
  54. 54.
    Lohmeijer BGG, Schubert US (2002) Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew Chem Int Ed 41(20):3825–3829.  https://doi.org/10.1002/1521-3773(20021018)41:20<3825::AID-ANIE3825>3.0.CO;2-6 CrossRefGoogle Scholar
  55. 55.
    Meier MAR, Hofmeier H, Abeln CH, Tziatzios C, Rasa M, Schubert D, Schubert US (2006) First GPC results of terpyridine based chain extended supramolecular polymers: comparison with viscosity and analytical ultracentrifugation. E-Polymers:16.  https://doi.org/10.1515/epoly.2006.6.1.209
  56. 56.
    Lohmeijer BGG, Schubert US (2003) Water-soluble building blocks for terpyridine-containing supramolecular polymers: synthesis, complexation and pH stability studies of poly(ethylene oxide) moieties. Macromol Chem Phys 204(8):1072–1078.  https://doi.org/10.1002/macp.200390078 CrossRefGoogle Scholar
  57. 57.
    Chiper M, Hoogenboom R, Schubert US (2008) Ruthenium(II) ions triggered direct supramolecular polymerization of bis-terpyridine poly(ethylene glycol): new insights on synthesis and optimization. E-Polymers:157.  https://doi.org/10.1515/epoly.2008.8.1.1811
  58. 58.
    Hofmeier H, Schmatloch S, Wouters D, Schubert US (2003) Linear terpyridine-ruthenium(II) poly(ethylene glycol) coordination polymers. Macromol Chem Phys 204(18):2197–2203.  https://doi.org/10.1002/macp.200300011 CrossRefGoogle Scholar
  59. 59.
    Lohmeijer BGG, Wouters D, Yin Z, Schubert US (2001) Block copolymer libraries using supramolecular strategies. PMSE Prepr 85:460–461Google Scholar
  60. 60.
    Gohy J-F, Lohmeijer BGG, Varshney SK, Décamps B, Leroy E, Boileau S, Schubert US (2002) Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer. Macromolecules 35(26):9748–9755.  https://doi.org/10.1021/ma021175r CrossRefGoogle Scholar
  61. 61.
    Chiper M, Hoogenboom R, Schubert US (2010) New terpyridine macroligands as potential synthons for supramolecular assemblies. Eur Polym J 46(2):260–269.  https://doi.org/10.1016/j.eurpolymj.2009.10.021 CrossRefGoogle Scholar
  62. 62.
    Landsmann S, Winter A, Chiper M, Fustin C-A, Hoeppener S, Schubert US (2008) Poly(dimethylsiloxane)-substituted 2,2′:6′,2″-terpyridines: synthesis and characterization of new amphiphilic supramolecular diblock copolymers. Macromol Chem Phys 209(16):1666–1672.  https://doi.org/10.1002/macp.200800219 CrossRefGoogle Scholar
  63. 63.
    Gohy J-F, Lohmeijer BGG, Alexeev AS, Wang X-S, Manners I, Winnik MA, Schubert US (2004) Cylindrical micelles from the aqueous self-assembly of an amphiphilic poly(ethylene oxide)-b-poly(ferrocenylsilane) (PEO-b-PFS) block copolymer with a metallo-supramolecular linker at the block junction. Chem Eur J 10(17):4315–4323.  https://doi.org/10.1002/chem.200400222 CrossRefPubMedGoogle Scholar
  64. 64.
    Chiper M, Fournier D, Hoogenboom R, Schubert US (2008) Thermosensitive and switchable terpyridine-functionalized metallo-supramolecular poly(N-isopropylacrylamide). Macromol Rapid Commun 29(20):1640–1647.  https://doi.org/10.1002/marc.200800339 CrossRefGoogle Scholar
  65. 65.
    Winter A, Wild A, Hoogenboom R, Fijten MWM, Hager MD, Fallahpour R-A, Schubert US (2009) Azido- and ethynyl-substituted 2,2′:6′,2″-terpyridines as suitable substrates for click reactions. Synthesis (9):1506–1512.  https://doi.org/10.1055/s-0028-1088159 CrossRefGoogle Scholar
  66. 66.
    Xiao N, Chen Y, Shen X, Zhang C, Yano S, Gottschaldt M, Schubert US, Kakuchi T, Satoh T (2013) Synthesis of miktoarm star copolymer Ru(II) complexes by click-to-chelate approach. Polym J 45(2):216–225.  https://doi.org/10.1038/pj.2012.100 CrossRefGoogle Scholar
  67. 67.
    Guerrero-Sanchez C, Lohmeijer BGG, Meier MAR, Schubert US (2005) Synthesis of terpyridine-terminated polymers by anionic polymerization. Macromolecules 38(25):10388–10396.  https://doi.org/10.1021/ma051002c CrossRefGoogle Scholar
  68. 68.
    Ott C, Kranenburg JM, Guerrero-Sanchez C, Hoeppener S, Wouters D, Schubert US (2009) Supramolecular assembly via noncovalent metal coordination chemistry: synthesis, characterization and elastic properties. Macromolecules 42(6):2177–2183.  https://doi.org/10.1021/ma802298p CrossRefGoogle Scholar
  69. 69.
    Ott C, Pavlov GM, Guerrero-Sanchez C, Schubert US (2009) Alternating terpyridine-end functionalized copolymers of styrene and diphenylethylene via anionic polymerization techniques: a detailed characterization study. J Polym Sci Part A: Polym Chem 47(14):3691–3701.  https://doi.org/10.1002/pola.23407 CrossRefGoogle Scholar
  70. 70.
    Pavlov GM, Amorós D, Ott C, Zaitseva II, Garcia de la Torre J, Schubert US (2009) Hydrodynamic analysis of well-defined flexible linear macromolecules of low molar mass. Macromolecules 42(19):7447–7455.  https://doi.org/10.1021/ma901027u CrossRefGoogle Scholar
  71. 71.
    Henderson IM, Hayward RC (2010) Synthesis of end-functionalized polystyrene by direct nucleophilic addition of polystyryllithium to bipyridine or terpyridine. Macromolecules 43(7):3249–3255.  https://doi.org/10.1021/ma1001657 CrossRefGoogle Scholar
  72. 72.
    Schubert US, Hien O, Eschbaumer C (2000) Functionalized polymers with metal complexing segments: a simple and high-yield entry towards 2,2′:6′,2″-terpyridine-based oligomers. Macromol Rapid Commun 21(16):1156–1161.  https://doi.org/10.1002/1521-3927(20001101)21:16<1156::AID-MARC1156>3.0.CO;2-O CrossRefGoogle Scholar
  73. 73.
    Schubert US, Schmatloch S, Precup AA (2002) Access to supramolecular polymers: large scale synthesis of 4′-chloro-2,2′: 6′,2″-terpyridine and an application to poly(propylene oxide) telechelics. Des Monomers Polym 5(2–3):211–221.  https://doi.org/10.1163/156855502760157935 CrossRefGoogle Scholar
  74. 74.
    Lohmeijer BGG, Schubert US (2003) Playing LEGO with macromolecules: design, synthesis and self-organization with metal complexes. J Polym Sci Part A: Polym Chem 41(10):1413–1427.  https://doi.org/10.1002/pola.10685 CrossRefGoogle Scholar
  75. 75.
    Schubert US, Eschbaumer C, Andres PR, Hofmeier H, Weidl CH, Herdtweck E, Dulkheit E, Morteani A, Hecker NE, Feldmann J (2001) 2,2′:6′,2″-Terpyridine metal complexes as building blocks for extended functional metallo-supramolecular assemblies and polymers. Synth Metals 121(1–3):1249–1252.  https://doi.org/10.1016/S0379-6779(00)01430-2 CrossRefGoogle Scholar
  76. 76.
    Meier MAR, Lohmeijer BGG, Schubert US (2003) Characterization of defined metal-containing supramolecular block copolymers. Macromol Rapid Commun 24(14):852–857.  https://doi.org/10.1002/marc.200350031 CrossRefGoogle Scholar
  77. 77.
    Raşa M, Tziatzios C, Lohmeijer BGG, Schubert D, Schubert US (2006) Analytical ultracentrifugation studies on terpyridine-end-functionalized poly(ethylene oxide) and polystyrene systems complexed via Ru(II) ions. Progr Colloid Polym Sci 131:165–171.  https://doi.org/10.1007/2882_015 CrossRefGoogle Scholar
  78. 78.
    Tziatzios C, Precup AA, Lohmeijer BGG, Börger L, Schubert US, Schubert D (2004) Dimerization of monofunctionalized poly(ethylene oxide) via metal–ligand interactions and hydrogen bonds. Progr Colloid Polym Sci 127:54–60.  https://doi.org/10.1007/b98013 CrossRefGoogle Scholar
  79. 79.
    Schubert D, Tziatzios C, Schuck P, Schubert US (1999) Characterizing the solution properties of supramolecular systems by analytical ultracentrifugation. Chem Eur J 5(3):1377–1383.  https://doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1377::AID-CHEM1377>3.0.CO;2-H CrossRefGoogle Scholar
  80. 80.
    Oudhoff KA, Schoenmakers PJ, Kok WT (2004) Characterization of metallo bis(terpyridine) diblock polymers by nonaqueous capillary zone electrophoresis. Chromatographia 60(7–8):475–480.  https://doi.org/10.1365/s10337-004-0390-x CrossRefGoogle Scholar
  81. 81.
    Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2011) Self-healing materials. Adv Mater:5424–5430.  https://doi.org/10.1002/adma201003036
  82. 82.
    Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42(17):7446–7467.  https://doi.org/10.1039/C3CS60109A CrossRefPubMedGoogle Scholar
  83. 83.
    Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–337.  https://doi.org/10.1038/nature09963 CrossRefPubMedGoogle Scholar
  84. 84.
    Ievins AD, Moughton AO, O’Reilly RK (2008) Synthesis of hollow responsive functional nanocages using a metal-ligand complexation strategy. Macromolecules 41(10):3571–3578.  https://doi.org/10.1021/ma800047r CrossRefGoogle Scholar
  85. 85.
    Gohy J-F, Lohmeijer BGG, Schubert US (2003) From supramolecular block copolymers to advanced nano-objects. Chem Eur J 9(15):3472–3479.  https://doi.org/10.1002/chem.200204640 CrossRefPubMedGoogle Scholar
  86. 86.
    Fustin C-A, Lohmeijer BGG, Duwez A-S, Jonas AM, Schubert US, Gohy J-F (2005) Nanoporous thin films from self-assembled metallo-supramolecular block copolymers. Adv Mater 17(9):1162–1165.  https://doi.org/10.1002/adma.200402073 CrossRefGoogle Scholar
  87. 87.
    Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243.  https://doi.org/10.1039/c3CS35499g CrossRefPubMedGoogle Scholar
  88. 88.
    Ziessel R, Grosshenny V, Hissler M, Stroh C (2004) cis-[Ru(2,2′:6′,2″-terpyridine)(DMSO)Cl2]: useful precursor for the synthesis of heteroleptic terpyridine complexes under mild conditions. Inorg Chem 43(14):4262–4271.  https://doi.org/10.1021/ic049822d CrossRefPubMedGoogle Scholar
  89. 89.
    Underwood CC, Stadelman BS, Sleeper ML, Brumaghim JL (2013) Synthesis and electrochemical characterization of [Ru(NCCH3)6]2+, tris(acetonitrile) tris(pyrazolyl)borate and tris(acetonitrile) tris(pyrazolyl)methane ruthenium(II) complexes. Inorg Chim Acta 405:470–476.  https://doi.org/10.1016/j.ica.2013.02.027 CrossRefGoogle Scholar
  90. 90.
    Hamley IW (1998) The physics of block copolymers. Oxford Science Publications, OxfordGoogle Scholar
  91. 91.
    Gohy J-F (2005) Block copolymer micelles. Adv Polym Sci 190:65–136.  https://doi.org/10.1007/12_048 CrossRefGoogle Scholar
  92. 92.
    Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48.  https://doi.org/10.1016/j.addr.2012.09.013 CrossRefGoogle Scholar
  93. 93.
    Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170.  https://doi.org/10.1016/S0079-6700(03)00015-7 CrossRefGoogle Scholar
  94. 94.
    Gohy J-F, Lohmeijer BGG, Schubert US (2002) Metallo-supramolecular block copolymer micelles. Macromolecules 35(12):4560–4563.  https://doi.org/10.1021/ma012042t CrossRefGoogle Scholar
  95. 95.
    Gohy J-F, Lohmeijer BGG, Varshney SK, Schubert US (2002) Covalent vs. metallo-supramolecular block copolymer micelles. Macromolecules 35(19):7427–7435.  https://doi.org/10.1021/ma0204812 CrossRefGoogle Scholar
  96. 96.
    Mayer G, Vogel V, Lohmeijer BGG, Gohy J-F, van den Broek JA, Haase W, Schubert US, Schubert D (2004) Metallo-supramolecular block copolymer micelles: improved preparation and characterization. J Polym Sci Part A: Polym Chem 2(17):4458–4465.  https://doi.org/10.1002/pola.20263 CrossRefGoogle Scholar
  97. 97.
    Regev O, Gohy J-F, Lohmeijer BGG, Varshney SK, Hubert DHW, Frederik PM, Schubert US (2004) Dynamic light scattering and cryogenic transmission electron microscopy investigations on metallo-supramolecular aqueous micelles: evidence of secondary aggregation. Colloid Polym Sci 282(4):407–411.  https://doi.org/10.1007/s00396-003-0975-1 CrossRefGoogle Scholar
  98. 98.
    Vogel V, Gohy J-F, Lohmeijer BGG, van den Broek JA, Haase W, Schubert US, Schubert D (2003) Metallo-supramolecular micelles: studies by analytical ultracentrifugation and electron microscopy. J Polym Sci Part A: Polym Chem 41(20):3159–3168.  https://doi.org/10.1002/pola.10902 CrossRefGoogle Scholar
  99. 99.
    Al-Hussein M, Lohmeijer BGG, Schubert US, de Jeu WH (2003) Melt morphology of polystyrene-poly(ethylene oxide) metallo-supramolecular diblock copolymer. Macromolecules 36(25):9281–9284.  https://doi.org/10.1021/ma035183z CrossRefGoogle Scholar
  100. 100.
    Al-Hussein M, de Jeu WH, Lohmeijer BGG, Schubert US (2005) Phase behavior of the melt of polystyrene-poly(ethylene oxide) metallo-supramolecular diblock copolymer with bulky counterions. Macromolecules 38(7):2832–2836.  https://doi.org/10.1021/ma047784b CrossRefGoogle Scholar
  101. 101.
    Lohmeijer BGG, Wouters D, Yin Z-H, Schubert US (2004) Block copolymer libraries: modular versatility of the macromolecular LEGO system. Chem Commun (24):2886–2887.  https://doi.org/10.1039/b411777h
  102. 102.
    Fustin C-A, Guillet P, Misner MJ, Russell TP, Schubert US, Gohy J-F (2008) Self-assembly of metallo-supramolecular block copolymers in thin films. J Polym Sci Part A: Polym Chem 46(14):4719–4724.  https://doi.org/10.1002/pola.22805 CrossRefGoogle Scholar
  103. 103.
    Guillet P, Fustin C-A, Lohmeijer BGG, Schubert US, Gohy J-F (2006) Study of the influence of the metal-ligand complex on the size of aqueous metallo-supramolecular micelles. Macromolecules 39(16):5484–5488.  https://doi.org/10.1021/ma060929p CrossRefGoogle Scholar
  104. 104.
    Guillet P, Fustin C-A, Wouters D, Hoeppener S, Schubert US, Gohy J-F (2009) Amphiphilic brushes from metallo-supramolecular block copolymers. Soft Matter 5(7):1460–1465.  https://doi.org/10.1039/b817320f CrossRefGoogle Scholar
  105. 105.
    Gohy J-F, Lohmeijer BGG, Schubert US (2002) Covalent vs. metallo-supramolecular block copolymer micelles. Macromol Rapid Commun 23(9):555–560.  https://doi.org/10.1021/ma0204812 CrossRefGoogle Scholar
  106. 106.
    Gohy J-F, Lohmeijer BGG, Schubert US (2002) Reversible metallo-supramolecular block copolymer micelles containing a soft core. Macromol Rapid Commun 23(9):555–560.  https://doi.org/10.1002/1521-3927(20020601)23:9<555::AID-MARC555>3.0.CO;2-K CrossRefGoogle Scholar
  107. 107.
    Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, Winnik MA, Manners I (2010) Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem 2(7):566–570.  https://doi.org/10.1038/nchem.664 CrossRefPubMedGoogle Scholar
  108. 108.
    Hailes RLN, Oliver AM, Gwyther J, Whittell GR, Manners I (2016) Polyferrocenylsilanes: synthesis, properties and applications. Chem Soc Rev 45(19):5358–5407.  https://doi.org/10.1039/c6cS00155f CrossRefPubMedGoogle Scholar
  109. 109.
    Lodge TP, Rasdal A, Li Z-B, Hillmyer MA (2005) Simultaneous, segregated storage of two agents in a multicompartment micelle. J Am Chem Soc 127(50):17608–17609.  https://doi.org/10.1021/ja056841t CrossRefPubMedGoogle Scholar
  110. 110.
    Gohy J-F, Willet N, Varshney SK, Zhang J-X, Jérôme R (2001) Core-shell-corona micelles with a responsive shell. Angw Chem Int Ed 40(71):3214–3216.  https://doi.org/10.1002/1521-3773(20010903)40:17<3214::AID-ANIE3214>3.0.CO;2-F CrossRefGoogle Scholar
  111. 111.
    Fustin C-A, Abetz V, Gohy J-F (2005) Triblock terpolymer micelles: a personal outlook. Eur Phys J E 16(3):291–302.  https://doi.org/10.1140/epje/i2004-10086-0 CrossRefPubMedGoogle Scholar
  112. 112.
    Guillet P, Fustin C-A, Mugemana C, Ott C, Schubert US, Gohy J-F (2008) Tuning block copolymer micelles by metal-ligand interactions. Soft Matter 4(11):2278–2282.  https://doi.org/10.1039/b808280d CrossRefGoogle Scholar
  113. 113.
    Abd-El-Aziz AS, Shipman PO, Boden BN, NcNeil WS (2010) Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog Polym Sci 35(6):714–836.  https://doi.org/10.1016/j.progpolymsci.2010.01.004 CrossRefGoogle Scholar
  114. 114.
    Janini TE, Fattore JL, Mohler DL (1999) Rapid assembly of rigid rods by metal complexation of bis(terpyridyl) ligands. J Organomet Chem 578(1–2):260–263.  https://doi.org/10.1016/S0022-328X(98)01110-3 CrossRefGoogle Scholar
  115. 115.
    Lohmeijer BGG (2004) Playing LEGO with macromolecules: connecting polymer chains using terpyridine metal complexes. PhD Thesis, Eindhoven University of Technology, EindhovenGoogle Scholar
  116. 116.
    Ott C (2008) Advances in supramolecular polymer chemistry: well-defined terpyridine-functionalized materials. PhD Thesis, Eindhoven University of Technology, EindhovenGoogle Scholar
  117. 117.
    Chiper M, Winter A, Hoogenboom R, Egbe DAM, Wouters D, Hoeppener S, Fustin C-A, Gohy J-F, Schubert US (2008) Synthesis and micellization of coil-rod-coil ruthenium(II) terpyridine assemblies. Macromolecules 41(22):8823–8831.  https://doi.org/10.1021/ma801217v CrossRefGoogle Scholar
  118. 118.
    Schlütter F, Pavlov GM, Gohy J-F, Winter A, Wild A, Hager MD, Hoeppener S, Schubert US (2011) Synthesis, characterization and micellization studies of coil-rod-coil and ABA ruthenium(II) terpyridine assemblies with π-conjugated electron acceptor systems. J Polym Sci Part A: Polym Chem 49(6):1396–1408.  https://doi.org/10.1002/pola.24560 CrossRefGoogle Scholar
  119. 119.
    Gohy J-F, Chiper M, Guillet P, Fustin C-A, Hoeppener S, Winter A, Hoogenboom R, Schubert US (2009) Self-organization of rod-coil tri- and tetra-arm star metallo-supramolecular block copolymers in selective solvents. Soft Matter 5(15):2954–2961.  https://doi.org/10.1039/b903111a CrossRefGoogle Scholar
  120. 120.
    Constable EC (1995) Towards helical coordination polymers: molecular wires in chiral coats. Macromol Symp 98:503–524.  https://doi.org/10.1002/masy.19950980141 CrossRefGoogle Scholar
  121. 121.
    De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Supramolecular polymerization. Chem Rev 109(111):5687–5754.  https://doi.org/10.1021/cr900181u CrossRefPubMedGoogle Scholar
  122. 122.
    Winter A, Hager MD, Schubert US (2012) Supramolecular polymers. In: Möller M, Matyjaszewski K (eds) Polymer science: a comprehensive reference, vol 5.13. Elsevier, Amsterdam, pp 269–310CrossRefGoogle Scholar
  123. 123.
    Schmatloch S, González MF, Schubert US (2002) Metallo-supramolecular diethylene glycol: water-soluble reversible polymers. Macromol Rapid Commun 23(16):957–961.  https://doi.org/10.1002/1521-3927(200211)23:16<957::AID-MARC957>3.0.CO;2-W CrossRefGoogle Scholar
  124. 124.
    Schmatloch S, van den Berg AMJ, Alexeev AS, Hofmeier H, Schubert US (2003) Soluble high-molecular-mass poly(ethylene oxide)s via self-organization. Macromolecules 36(26):9943–9949.  https://doi.org/10.1021/ma0350359 CrossRefGoogle Scholar
  125. 125.
    Constable EC, Housecroft CE, Smith CB (2003) Self-assembly of two discrete polynuclear iron(II) metallomacrocycles from a ligand containing two 2,2′:6′,2″-terpyridine binding domains. Inorg Chem Commun 6(8):1011–1013.  https://doi.org/10.1016/S1387-7003(03)00168-0 CrossRefGoogle Scholar
  126. 126.
    Raşa M, Lohmeijer BGG, Hofmeier H, Thijs HML, Schubert D, Schubert US, Tziatzios C (2006) Characterization of metallo-supramolecular block copolymers by analytical ultracentrifugation. Macromol Chem Phys 207(22):2029–2041.  https://doi.org/10.1002/macp.200600235 CrossRefGoogle Scholar
  127. 127.
    Meier MAR, Wouters D, Ott C, Guillet P, Fustin C-A, Gohy J-F, Schubert US (2006) Supramolecular ABA triblock copolymers via a polycondensation approach: synthesis, characterization and micelle formation. Macromolecules 39(4):1569–1576.  https://doi.org/10.1021/ma052045w CrossRefGoogle Scholar
  128. 128.
    Chiper M, Meier MAR, Wouters D, Hoeppener S, Fustin C-A, Gohy J-F, Schubert US (2008) Supramolecular self-assembled Ni(II), Fe(II) and Co(II) ABA triblock copolymers. Macromolecules 41(8):2771–2777.  https://doi.org/10.1021/ma0718954 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory for Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  2. 2.Jena Center for Soft Matter (JCSM)JenaGermany
  3. 3.Center for Energy and Environmental Chemistry Jena (CEEC Jena)JenaGermany

Personalised recommendations