Advertisement

Preparation of Element-Block Materials Using Inorganic Nanostructures and Their Applications

  • Naokazu Idota
  • Yoshiyuki Sugahara
Chapter

Abstract

The evolution of organic-inorganic hybrids is highly desirable for the further acquisition of functionalities not achievable with conventional polymer materials in terms of mechanical, electronic, optical, and magnetic properties. Element-blocks, which are heterogeneous structures consisting of organic and inorganic components mixed at the element level, and their highly ordered polymeric derivatives, element-block polymers, are highly useful for overcoming a number of difficult problems. Among the various approaches to establishing element-blocks, this review focuses on surface modification of inorganic nanostructures with organic molecules to control interactions at the interfaces between organic and inorganic components in the organic-inorganic hybrids. For the design of surface-modified inorganic-nanostructure-based element-blocks, the dimensional features of inorganic nanostructures and the methods of modifying organic molecules on the surfaces are discussed from the viewpoint of nanomaterials. Finally, various applications using surface-modified inorganic-nanostructure-based element-blocks are introduced in terms of polymer-based hybrids and hierarchal architectures to provide successful examples, which are important to the development of polymeric materials based on element-blocks.

Keywords

Nanostructure Surface modification Polymer-based hybrid Hierarchical architecture 

Notes

Acknowledgments

The research presented in this article was financially supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas, “New Polymeric Materials Based on Element-Blocks (No. 2401)” (JSPS KAKENHI Grant Number JP24102002).

References

  1. 1.
    Sanchez C, Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic−inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13(10):3061–3083.  https://doi.org/10.1021/cm011061e CrossRefGoogle Scholar
  2. 2.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261.  https://doi.org/10.1016/j.progpolymsci.2013.02.003 CrossRefGoogle Scholar
  3. 3.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88(5):633–643.  https://doi.org/10.1246/bcsj.20150081 CrossRefGoogle Scholar
  4. 4.
    Naka K, Irie Y (2017) Synthesis of single component element-block materials based on siloxane-based cage frameworks. Polym Int 66(2):187–194.  https://doi.org/10.1002/pi.5121 CrossRefGoogle Scholar
  5. 5.
    Niihori Y, Hossain S, Sharma S, Kumar B, Kurashige W, Negishi Y (2017) Understanding and practical use of ligand and metal exchange reactions in thiolate-protected metal clusters to synthesize controlled metal clusters. Chem Rec.  https://doi.org/10.1002/tcr.201700002 CrossRefGoogle Scholar
  6. 6.
    Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M (1999) Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics 18(8):1453–1459.  https://doi.org/10.1021/om980918n CrossRefGoogle Scholar
  7. 7.
    Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han M-Y (2013) Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5(8):3127.  https://doi.org/10.1039/c3nr34005h CrossRefPubMedGoogle Scholar
  8. 8.
    Baughman RH (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792.  https://doi.org/10.1126/science.1060928 CrossRefPubMedGoogle Scholar
  9. 9.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214.  https://doi.org/10.1021/cr3000412 CrossRefPubMedGoogle Scholar
  10. 10.
    Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc Lond Ser A 368(1915):1333–1383.  https://doi.org/10.1098/rsta.2009.0273 CrossRefGoogle Scholar
  11. 11.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191.  https://doi.org/10.1038/nmat1849 CrossRefPubMedGoogle Scholar
  12. 12.
    Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58(3):533–606.  https://doi.org/10.1103/RevModPhys.58.533 CrossRefGoogle Scholar
  13. 13.
    Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159.  https://doi.org/10.1016/j.progsolidstchem.2006.03.001 CrossRefGoogle Scholar
  14. 14.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939.  https://doi.org/10.1038/nmat2564 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452.  https://doi.org/10.1021/nl025819k CrossRefGoogle Scholar
  16. 16.
    Sotiriou GA, Schneider M, Pratsinis SE (2012) Green, silica-coated monoclinic Y2O3:Tb3+nanophosphors: flame synthesis and characterization. J Phys Chem C 116(7):4493–4499.  https://doi.org/10.1021/jp211722z CrossRefGoogle Scholar
  17. 17.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244.  https://doi.org/10.1002/anie.200602866 CrossRefGoogle Scholar
  18. 18.
    Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34(1):41–81.  https://doi.org/10.1146/annurev.matsci.34.052803.090949 CrossRefGoogle Scholar
  19. 19.
    Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415.  https://doi.org/10.1007/s11671-008-9174-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825.  https://doi.org/10.1897/08-090.1 CrossRefPubMedGoogle Scholar
  21. 21.
    Nie Z, Petukhova A, Kumacheva E (2009) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25.  https://doi.org/10.1038/nnano.2009.453 CrossRefPubMedGoogle Scholar
  22. 22.
    Popov V (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43(3):61–102.  https://doi.org/10.1016/j.mser.2003.10.001 CrossRefGoogle Scholar
  23. 23.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56.  https://doi.org/10.1038/382054a0 CrossRefGoogle Scholar
  24. 24.
    de Heer WA, Ch telain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180.  https://doi.org/10.1126/science.270.5239.1179 CrossRefGoogle Scholar
  25. 25.
    Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Prog Solid State Chem 31(1–2):5–147.  https://doi.org/10.1016/j.progsolidstchem.2003.08.001 CrossRefGoogle Scholar
  26. 26.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389.  https://doi.org/10.1002/adma.200390087 CrossRefGoogle Scholar
  27. 27.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102.  https://doi.org/10.1021/cr030063a CrossRefPubMedGoogle Scholar
  28. 28.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967.  https://doi.org/10.1126/science.269.5226.966 CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong Y, Mayers BT, Xia Y (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun (40):5013.  https://doi.org/10.1039/b509946c
  30. 30.
    Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534.  https://doi.org/10.1126/science.1158877 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204.  https://doi.org/10.1038/nature04235 CrossRefPubMedGoogle Scholar
  32. 32.
    Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83.  https://doi.org/10.1007/s40089-015-0176-1 CrossRefGoogle Scholar
  33. 33.
    Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J Appl Phys 49(5):051304.  https://doi.org/10.1143/jjap.49.051304 CrossRefGoogle Scholar
  34. 34.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419–1226419.  https://doi.org/10.1126/science.1226419 CrossRefGoogle Scholar
  35. 35.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interstratified clays as fundamental particles. Science 225(4665):923–925.  https://doi.org/10.1126/science.225.4665.923 CrossRefPubMedGoogle Scholar
  36. 36.
    Osada M, Sasaki T (2009) Exfoliated oxide nanosheets: new solution to nanoelectronics. J Mater Chem 19(17):2503.  https://doi.org/10.1039/b820160a CrossRefGoogle Scholar
  37. 37.
    Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21(4):457–461.  https://doi.org/10.1016/0025-5408(86)90011-5 CrossRefGoogle Scholar
  38. 38.
    Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater 24(2):210–228.  https://doi.org/10.1002/adma.201103241 CrossRefPubMedGoogle Scholar
  39. 39.
    Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun 21(11):705–722.  https://doi.org/10.1002/1521-3927(20000701)21:11<705::aid-marc705>3.0.co;2-3 CrossRefGoogle Scholar
  40. 40.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554.  https://doi.org/10.1021/cr9502357 CrossRefPubMedGoogle Scholar
  41. 41.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170.  https://doi.org/10.1021/cr0300789 CrossRefPubMedGoogle Scholar
  42. 42.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37(5):550–575.  https://doi.org/10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g CrossRefGoogle Scholar
  43. 43.
    Brzoska JB, Azouz IB, Rondelez F (1994) Silanization of solid substrates: a step toward reproducibility. Langmuir 10(11):4367–4373.  https://doi.org/10.1021/la00023a072 CrossRefGoogle Scholar
  44. 44.
    Mutin PH, Guerrero G, Vioux A (2003) Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C R Chim 6(8–10):1153–1164.  https://doi.org/10.1016/j.crci.2003.07.006 CrossRefGoogle Scholar
  45. 45.
    Okusa H, Kurihara K, Kunitake T (1994) Chemical modification of molecularly smooth mica surface and protein attachment. Langmuir 10(10):3577–3581.  https://doi.org/10.1021/la00022a034 CrossRefGoogle Scholar
  46. 46.
    Iijima M, Takenouchi S, Lenggoro IW, Kamiya H (2011) Effect of additive ratio of mixed silane alkoxides on reactivity with TiO2 nanoparticle surface and their stability in organic solvents. Adv Powder Technol 22(5):663–668.  https://doi.org/10.1016/j.apt.2010.09.015 CrossRefGoogle Scholar
  47. 47.
    Aronoff YG, Chen B, Lu G, Seto C, Schwartz J, Bernasek S (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 119(2):259–262.  https://doi.org/10.1021/ja953848+ CrossRefGoogle Scholar
  48. 48.
    Khaled SM, Sui R, Charpentier PA, Rizkalla AS (2007) Synthesis of TiO2−PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995.  https://doi.org/10.1021/la062879n CrossRefPubMedGoogle Scholar
  49. 49.
    Marcinko S, Fadeev AY (2004) Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 20(6):2270–2273.  https://doi.org/10.1021/la034914l CrossRefPubMedGoogle Scholar
  50. 50.
    Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12(26):6429–6435.  https://doi.org/10.1021/la9607621 CrossRefGoogle Scholar
  51. 51.
    Freedman LD, Doak GO (1957) The preparation and properties of phosphonic acids. Chem Rev 57(3):479–523.  https://doi.org/10.1021/cr50015a003 CrossRefGoogle Scholar
  52. 52.
    Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45(3):630–638.  https://doi.org/10.1016/j.eurpolymj.2008.12.031 CrossRefGoogle Scholar
  53. 53.
    Sarkar S, Bekyarova E, Niyogi S, Haddon RC (2011) Diels−Alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc 133(10):3324–3327.  https://doi.org/10.1021/ja200118b CrossRefPubMedGoogle Scholar
  54. 54.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240.  https://doi.org/10.1039/b917103g CrossRefPubMedGoogle Scholar
  55. 55.
    Sugahara Y (2014) Chemical processes employing inorganic layered compounds for inorganic and inorganic-organic hybrid materials. J Ceram Soc Jpn 122(1427):523–529.  https://doi.org/10.2109/jcersj2.122.523 CrossRefGoogle Scholar
  56. 56.
    Takahashi S, Nakato T, Hayashi S, Sugahara Y, Kuroda K (1995) Formation of methoxy-modified interlayer surface via the reaction between methanol and layered perovskite HLaNb2O7·xH2O. Inorg Chem 34(20):5065–5069.  https://doi.org/10.1021/ic00124a023 CrossRefGoogle Scholar
  57. 57.
    Tahara S, Sugahara Y (2003) Interlayer surface modification of the protonated triple-layered perovskite HCa2Nb3O10·xH2O with n-alcohols. Langmuir 19(22):9473–9478.  https://doi.org/10.1021/la0343876 CrossRefGoogle Scholar
  58. 58.
    Tahara S, Ichikawa T, Kajiwara G, Sugahara Y (2007) Reactivity of the Ruddlesden−Popper phase H2La2Ti3O10 with organic compounds: intercalation and grafting reactions. Chem Mater 19(9):2352–2358.  https://doi.org/10.1021/cm0623662 CrossRefGoogle Scholar
  59. 59.
    Suzuki H, Notsu K, Takeda Y, Sugimoto W, Sugahara Y (2003) Reactions of alkoxyl derivatives of a layered perovskite with alcohols: substitution reactions on the interlayer surface of a layered perovskite. Chem Mater 15(3):636–641.  https://doi.org/10.1021/cm0200902 CrossRefGoogle Scholar
  60. 60.
    Takeda Y, Suzuki H, Notsu K, Sugimoto W, Sugahara Y (2006) Preparation of a novel organic derivative of the layered perovskite bearing HLaNb2O7·nH2O interlayer surface trifluoroacetate groups. Mater Res Bull 41(4):834–841.  https://doi.org/10.1016/j.materresbull.2005.10.004 CrossRefGoogle Scholar
  61. 61.
    Shimada A, Yoneyama Y, Tahara S, Mutin PH, Sugahara Y (2009) Interlayer surface modification of the protonated ion-exchangeable layered perovskite HLaNb2O7xH2O with organophosphonic acids. Chem Mater 21(18):4155–4162.  https://doi.org/10.1021/cm900228c CrossRefGoogle Scholar
  62. 62.
    Gardolinski JEFC, Lagaly G, Czank M (2004) On the destruction of kaolinite and gibbsite by phenylphosphonic, phenylphosphinic and phenylarsonic acids: evidence for the formation of new Al compounds. Clay Miner 39(4):391–404.  https://doi.org/10.1180/0009855043940142 CrossRefGoogle Scholar
  63. 63.
    Idota N, Fukuda S, Tsukahara T, Sugahara Y (2015) Preparation of thermoresponsive nanosheets exhibiting phase transitions in water via surface modification of layered perovskite nanosheets with poly(N-isopropylacrylamide) (PNIPAAm). Chem Lett 44(2):203–205.  https://doi.org/10.1246/cl.140956 CrossRefGoogle Scholar
  64. 64.
    Kimura N, Kato Y, Suzuki R, Shimada A, Tahara S, Nakato T, Matsukawa K, Mutin PH, Sugahara Y (2014) Single- and double-layered organically modified nanosheets by selective interlayer grafting and exfoliation of layered potassium hexaniobate. Langmuir 30(4):1169–1175.  https://doi.org/10.1021/la404223x CrossRefPubMedGoogle Scholar
  65. 65.
    Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36(9):1454.  https://doi.org/10.1039/b608177k CrossRefPubMedGoogle Scholar
  66. 66.
    Lü C, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19(19):2884.  https://doi.org/10.1039/b816254a CrossRefGoogle Scholar
  67. 67.
    Kobayashi M, Saito H, Boury B, Matsukawa K, Sugahara Y (2013) Epoxy-based hybrids using TiO2 nanoparticles prepared via a non-hydrolytic sol-gel route. Appl Organomet Chem 27(11):673–677.  https://doi.org/10.1002/aoc.3027 CrossRefGoogle Scholar
  68. 68.
    Fujita M, Idota N, Matsukawa K, Sugahara Y (2015) Preparation of oleyl phosphate-modified TiO2/poly(methyl methacrylate) hybrid thin films for investigation of their optical properties. J Nanomater 2015:1–7.  https://doi.org/10.1155/2015/297197 CrossRefGoogle Scholar
  69. 69.
    Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21(46):18623.  https://doi.org/10.1039/c1jm13093e CrossRefGoogle Scholar
  70. 70.
    Maeda S, Fujita M, Idota N, Matsukawa K, Sugahara Y (2016) Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces 8(50):34762–34769.  https://doi.org/10.1021/acsami.6b10427 CrossRefPubMedGoogle Scholar
  71. 71.
    Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527.  https://doi.org/10.1021/cr900045a CrossRefPubMedGoogle Scholar
  72. 72.
    Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38(3):788–800.  https://doi.org/10.1021/ma048465n CrossRefGoogle Scholar
  73. 73.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641.  https://doi.org/10.1016/j.progpolymsci.2003.08.002 CrossRefGoogle Scholar
  74. 74.
    Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333.  https://doi.org/10.1016/j.carbon.2015.11.018 CrossRefGoogle Scholar
  75. 75.
    Asai Y, Ariake Y, Saito H, Idota N, Matsukawa K, Nishino T, Sugahara Y (2014) Layered perovskite nanosheets bearing fluoroalkoxy groups: their preparation and application in epoxy-based hybrids. RSC Adv 4(51):26932.  https://doi.org/10.1039/c4ra01777c CrossRefGoogle Scholar
  76. 76.
    Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H (2015) Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 7(9):5528–5537.  https://doi.org/10.1021/acsami.5b00106 CrossRefPubMedGoogle Scholar
  77. 77.
    Rhee CH, Kim Y, Lee JS, Kim HK, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells. J Power Sources 159(2):1015–1024.  https://doi.org/10.1016/j.jpowsour.2005.12.006 CrossRefGoogle Scholar
  78. 78.
    Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432.  https://doi.org/10.1021/am302500v CrossRefPubMedGoogle Scholar
  79. 79.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630.  https://doi.org/10.1002/smll.200900358 CrossRefPubMedGoogle Scholar
  80. 80.
    DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, Wunsch BH, Stellacci F (2007) Divalent metal nanoparticles. Science 315(5810):358–361.  https://doi.org/10.1126/science.1133162 CrossRefPubMedGoogle Scholar
  81. 81.
    Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200.  https://doi.org/10.1126/science.1189457 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat Mater 6(8):609–614.  https://doi.org/10.1038/nmat1954 CrossRefPubMedGoogle Scholar
  83. 83.
    Sardar R, Shumaker-Parry JS (2008) Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Nano Lett 8(2):731–736.  https://doi.org/10.1021/nl073154m CrossRefPubMedGoogle Scholar
  84. 84.
    He J, Liu Y, Babu T, Wei Z, Nie Z (2012) Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J Am Chem Soc 134(28):11342–11345.  https://doi.org/10.1021/ja3032295 CrossRefPubMedGoogle Scholar
  85. 85.
    Gao B, Arya G, Tao AR (2012) Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat Nanotechnol 7(7):433–437.  https://doi.org/10.1038/nnano.2012.83 CrossRefPubMedGoogle Scholar
  86. 86.
    Chen C-L, Zhang P, Rosi NL (2008) A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J Am Chem Soc 130(41):13555–13557.  https://doi.org/10.1021/ja805683r CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and Technology, Faculty of Bioscience and Applied ChemistryHosei UniversityKoganei-shiJapan
  2. 2.Department of Applied Chemistry, Faculty of Advanced Science and EngineeringWaseda UniversityShinjuku-kuJapan
  3. 3.Kagami Memorial Research Institute for Materials Science and TechnologyWaseda UniversityShinjuku-kuJapan

Personalised recommendations