Preparation of Element-Block Materials Using Inorganic Nanostructures and Their Applications

  • Naokazu Idota
  • Yoshiyuki Sugahara


The evolution of organic-inorganic hybrids is highly desirable for the further acquisition of functionalities not achievable with conventional polymer materials in terms of mechanical, electronic, optical, and magnetic properties. Element-blocks, which are heterogeneous structures consisting of organic and inorganic components mixed at the element level, and their highly ordered polymeric derivatives, element-block polymers, are highly useful for overcoming a number of difficult problems. Among the various approaches to establishing element-blocks, this review focuses on surface modification of inorganic nanostructures with organic molecules to control interactions at the interfaces between organic and inorganic components in the organic-inorganic hybrids. For the design of surface-modified inorganic-nanostructure-based element-blocks, the dimensional features of inorganic nanostructures and the methods of modifying organic molecules on the surfaces are discussed from the viewpoint of nanomaterials. Finally, various applications using surface-modified inorganic-nanostructure-based element-blocks are introduced in terms of polymer-based hybrids and hierarchal architectures to provide successful examples, which are important to the development of polymeric materials based on element-blocks.


Nanostructure Surface modification Polymer-based hybrid Hierarchical architecture 



The research presented in this article was financially supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas, “New Polymeric Materials Based on Element-Blocks (No. 2401)” (JSPS KAKENHI Grant Number JP24102002).


  1. 1.
    Sanchez C, Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic−inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13(10):3061–3083. CrossRefGoogle Scholar
  2. 2.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. CrossRefGoogle Scholar
  3. 3.
    Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88(5):633–643. CrossRefGoogle Scholar
  4. 4.
    Naka K, Irie Y (2017) Synthesis of single component element-block materials based on siloxane-based cage frameworks. Polym Int 66(2):187–194. CrossRefGoogle Scholar
  5. 5.
    Niihori Y, Hossain S, Sharma S, Kumar B, Kurashige W, Negishi Y (2017) Understanding and practical use of ligand and metal exchange reactions in thiolate-protected metal clusters to synthesize controlled metal clusters. Chem Rec. CrossRefGoogle Scholar
  6. 6.
    Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M (1999) Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics 18(8):1453–1459. CrossRefGoogle Scholar
  7. 7.
    Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han M-Y (2013) Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5(8):3127. CrossRefPubMedGoogle Scholar
  8. 8.
    Baughman RH (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792. CrossRefPubMedGoogle Scholar
  9. 9.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. CrossRefPubMedGoogle Scholar
  10. 10.
    Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc Lond Ser A 368(1915):1333–1383. CrossRefGoogle Scholar
  11. 11.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. CrossRefPubMedGoogle Scholar
  12. 12.
    Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58(3):533–606. CrossRefGoogle Scholar
  13. 13.
    Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159. CrossRefGoogle Scholar
  14. 14.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452. CrossRefGoogle Scholar
  16. 16.
    Sotiriou GA, Schneider M, Pratsinis SE (2012) Green, silica-coated monoclinic Y2O3:Tb3+nanophosphors: flame synthesis and characterization. J Phys Chem C 116(7):4493–4499. CrossRefGoogle Scholar
  17. 17.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. CrossRefGoogle Scholar
  18. 18.
    Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34(1):41–81. CrossRefGoogle Scholar
  19. 19.
    Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825. CrossRefPubMedGoogle Scholar
  21. 21.
    Nie Z, Petukhova A, Kumacheva E (2009) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25. CrossRefPubMedGoogle Scholar
  22. 22.
    Popov V (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43(3):61–102. CrossRefGoogle Scholar
  23. 23.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56. CrossRefGoogle Scholar
  24. 24.
    de Heer WA, Ch telain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180. CrossRefGoogle Scholar
  25. 25.
    Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Prog Solid State Chem 31(1–2):5–147. CrossRefGoogle Scholar
  26. 26.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389. CrossRefGoogle Scholar
  27. 27.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. CrossRefPubMedGoogle Scholar
  28. 28.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967. CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong Y, Mayers BT, Xia Y (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun (40):5013.
  30. 30.
    Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534. CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204. CrossRefPubMedGoogle Scholar
  32. 32.
    Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83. CrossRefGoogle Scholar
  33. 33.
    Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J Appl Phys 49(5):051304. CrossRefGoogle Scholar
  34. 34.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419–1226419. CrossRefGoogle Scholar
  35. 35.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interstratified clays as fundamental particles. Science 225(4665):923–925. CrossRefPubMedGoogle Scholar
  36. 36.
    Osada M, Sasaki T (2009) Exfoliated oxide nanosheets: new solution to nanoelectronics. J Mater Chem 19(17):2503. CrossRefGoogle Scholar
  37. 37.
    Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21(4):457–461. CrossRefGoogle Scholar
  38. 38.
    Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater 24(2):210–228. CrossRefPubMedGoogle Scholar
  39. 39.
    Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun 21(11):705–722.<705::aid-marc705>;2-3 CrossRefGoogle Scholar
  40. 40.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554. CrossRefPubMedGoogle Scholar
  41. 41.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170. CrossRefPubMedGoogle Scholar
  42. 42.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37(5):550–575.<550::aid-anie550>;2-g CrossRefGoogle Scholar
  43. 43.
    Brzoska JB, Azouz IB, Rondelez F (1994) Silanization of solid substrates: a step toward reproducibility. Langmuir 10(11):4367–4373. CrossRefGoogle Scholar
  44. 44.
    Mutin PH, Guerrero G, Vioux A (2003) Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C R Chim 6(8–10):1153–1164. CrossRefGoogle Scholar
  45. 45.
    Okusa H, Kurihara K, Kunitake T (1994) Chemical modification of molecularly smooth mica surface and protein attachment. Langmuir 10(10):3577–3581. CrossRefGoogle Scholar
  46. 46.
    Iijima M, Takenouchi S, Lenggoro IW, Kamiya H (2011) Effect of additive ratio of mixed silane alkoxides on reactivity with TiO2 nanoparticle surface and their stability in organic solvents. Adv Powder Technol 22(5):663–668. CrossRefGoogle Scholar
  47. 47.
    Aronoff YG, Chen B, Lu G, Seto C, Schwartz J, Bernasek S (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 119(2):259–262. CrossRefGoogle Scholar
  48. 48.
    Khaled SM, Sui R, Charpentier PA, Rizkalla AS (2007) Synthesis of TiO2−PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995. CrossRefPubMedGoogle Scholar
  49. 49.
    Marcinko S, Fadeev AY (2004) Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 20(6):2270–2273. CrossRefPubMedGoogle Scholar
  50. 50.
    Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12(26):6429–6435. CrossRefGoogle Scholar
  51. 51.
    Freedman LD, Doak GO (1957) The preparation and properties of phosphonic acids. Chem Rev 57(3):479–523. CrossRefGoogle Scholar
  52. 52.
    Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45(3):630–638. CrossRefGoogle Scholar
  53. 53.
    Sarkar S, Bekyarova E, Niyogi S, Haddon RC (2011) Diels−Alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc 133(10):3324–3327. CrossRefPubMedGoogle Scholar
  54. 54.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. CrossRefPubMedGoogle Scholar
  55. 55.
    Sugahara Y (2014) Chemical processes employing inorganic layered compounds for inorganic and inorganic-organic hybrid materials. J Ceram Soc Jpn 122(1427):523–529. CrossRefGoogle Scholar
  56. 56.
    Takahashi S, Nakato T, Hayashi S, Sugahara Y, Kuroda K (1995) Formation of methoxy-modified interlayer surface via the reaction between methanol and layered perovskite HLaNb2O7·xH2O. Inorg Chem 34(20):5065–5069. CrossRefGoogle Scholar
  57. 57.
    Tahara S, Sugahara Y (2003) Interlayer surface modification of the protonated triple-layered perovskite HCa2Nb3O10·xH2O with n-alcohols. Langmuir 19(22):9473–9478. CrossRefGoogle Scholar
  58. 58.
    Tahara S, Ichikawa T, Kajiwara G, Sugahara Y (2007) Reactivity of the Ruddlesden−Popper phase H2La2Ti3O10 with organic compounds: intercalation and grafting reactions. Chem Mater 19(9):2352–2358. CrossRefGoogle Scholar
  59. 59.
    Suzuki H, Notsu K, Takeda Y, Sugimoto W, Sugahara Y (2003) Reactions of alkoxyl derivatives of a layered perovskite with alcohols: substitution reactions on the interlayer surface of a layered perovskite. Chem Mater 15(3):636–641. CrossRefGoogle Scholar
  60. 60.
    Takeda Y, Suzuki H, Notsu K, Sugimoto W, Sugahara Y (2006) Preparation of a novel organic derivative of the layered perovskite bearing HLaNb2O7·nH2O interlayer surface trifluoroacetate groups. Mater Res Bull 41(4):834–841. CrossRefGoogle Scholar
  61. 61.
    Shimada A, Yoneyama Y, Tahara S, Mutin PH, Sugahara Y (2009) Interlayer surface modification of the protonated ion-exchangeable layered perovskite HLaNb2O7xH2O with organophosphonic acids. Chem Mater 21(18):4155–4162. CrossRefGoogle Scholar
  62. 62.
    Gardolinski JEFC, Lagaly G, Czank M (2004) On the destruction of kaolinite and gibbsite by phenylphosphonic, phenylphosphinic and phenylarsonic acids: evidence for the formation of new Al compounds. Clay Miner 39(4):391–404. CrossRefGoogle Scholar
  63. 63.
    Idota N, Fukuda S, Tsukahara T, Sugahara Y (2015) Preparation of thermoresponsive nanosheets exhibiting phase transitions in water via surface modification of layered perovskite nanosheets with poly(N-isopropylacrylamide) (PNIPAAm). Chem Lett 44(2):203–205. CrossRefGoogle Scholar
  64. 64.
    Kimura N, Kato Y, Suzuki R, Shimada A, Tahara S, Nakato T, Matsukawa K, Mutin PH, Sugahara Y (2014) Single- and double-layered organically modified nanosheets by selective interlayer grafting and exfoliation of layered potassium hexaniobate. Langmuir 30(4):1169–1175. CrossRefPubMedGoogle Scholar
  65. 65.
    Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36(9):1454. CrossRefPubMedGoogle Scholar
  66. 66.
    Lü C, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19(19):2884. CrossRefGoogle Scholar
  67. 67.
    Kobayashi M, Saito H, Boury B, Matsukawa K, Sugahara Y (2013) Epoxy-based hybrids using TiO2 nanoparticles prepared via a non-hydrolytic sol-gel route. Appl Organomet Chem 27(11):673–677. CrossRefGoogle Scholar
  68. 68.
    Fujita M, Idota N, Matsukawa K, Sugahara Y (2015) Preparation of oleyl phosphate-modified TiO2/poly(methyl methacrylate) hybrid thin films for investigation of their optical properties. J Nanomater 2015:1–7. CrossRefGoogle Scholar
  69. 69.
    Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21(46):18623. CrossRefGoogle Scholar
  70. 70.
    Maeda S, Fujita M, Idota N, Matsukawa K, Sugahara Y (2016) Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces 8(50):34762–34769. CrossRefPubMedGoogle Scholar
  71. 71.
    Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527. CrossRefPubMedGoogle Scholar
  72. 72.
    Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38(3):788–800. CrossRefGoogle Scholar
  73. 73.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. CrossRefGoogle Scholar
  74. 74.
    Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333. CrossRefGoogle Scholar
  75. 75.
    Asai Y, Ariake Y, Saito H, Idota N, Matsukawa K, Nishino T, Sugahara Y (2014) Layered perovskite nanosheets bearing fluoroalkoxy groups: their preparation and application in epoxy-based hybrids. RSC Adv 4(51):26932. CrossRefGoogle Scholar
  76. 76.
    Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H (2015) Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 7(9):5528–5537. CrossRefPubMedGoogle Scholar
  77. 77.
    Rhee CH, Kim Y, Lee JS, Kim HK, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells. J Power Sources 159(2):1015–1024. CrossRefGoogle Scholar
  78. 78.
    Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432. CrossRefPubMedGoogle Scholar
  79. 79.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630. CrossRefPubMedGoogle Scholar
  80. 80.
    DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, Wunsch BH, Stellacci F (2007) Divalent metal nanoparticles. Science 315(5810):358–361. CrossRefPubMedGoogle Scholar
  81. 81.
    Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat Mater 6(8):609–614. CrossRefPubMedGoogle Scholar
  83. 83.
    Sardar R, Shumaker-Parry JS (2008) Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Nano Lett 8(2):731–736. CrossRefPubMedGoogle Scholar
  84. 84.
    He J, Liu Y, Babu T, Wei Z, Nie Z (2012) Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J Am Chem Soc 134(28):11342–11345. CrossRefPubMedGoogle Scholar
  85. 85.
    Gao B, Arya G, Tao AR (2012) Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat Nanotechnol 7(7):433–437. CrossRefPubMedGoogle Scholar
  86. 86.
    Chen C-L, Zhang P, Rosi NL (2008) A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J Am Chem Soc 130(41):13555–13557. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and Technology, Faculty of Bioscience and Applied ChemistryHosei UniversityKoganei-shiJapan
  2. 2.Department of Applied Chemistry, Faculty of Advanced Science and EngineeringWaseda UniversityShinjuku-kuJapan
  3. 3.Kagami Memorial Research Institute for Materials Science and TechnologyWaseda UniversityShinjuku-kuJapan

Personalised recommendations