Advertisement

Polyphosphazenes as an Example of the Element-Blocks Approach to New Materials

  • Harry R. Allcock
Chapter

Abstract

Polyphosphazenes are inorganic-organic high polymers with a backbone of alternating phosphorus and nitrogen atoms and two organic or organometallic side groups attached to each phosphorus. Most of these polymers are synthesized by macromolecular substitution reactions carried out on poly(dichlorophosphazene), (NPCl2)n. The chlorine substitution reactions involve alkoxides, aryloxides, primary or secondary amines, or a range of organometallic reagents. Structural variations are accomplished via the use of one, two, or more different nucleophiles and substituents along the polymer chain and by the employment of reagent size and reactivity to control polymer properties and emphasize specific uses. Applications have been developed for these polymers as elastomers, thermoplastics, biostable or bioerodible medical materials, fire-resistant lithium battery electrolytes, films, or foams, and gas and liquid separation membranes.

Keywords

Polymers Polyphosphazenes Macromolecular substitution Properties Uses 

References

  1. 1.
    Allcock HR (2003) Chemistry and applications of polyphosphazenes. John Wiley & Sons, HobokenGoogle Scholar
  2. 2.
    Liebig J (1834) A Compound of Phosphorus with Nitrogen (Supplement). Ann Chem Pharm 11:139Google Scholar
  3. 3.
    Rose H (1834) A Compound of Phosphorus with Nitrogen. Ann Chem Pharm 11:129Google Scholar
  4. 4.
    Stokes HN (1897) On the Chloronitrides of Phosphorus (II). Amer Chem J 19:782Google Scholar
  5. 5.
    Allcock HR, Kugel RL (1965) Synthesis of High Polymeric Alkoxy- and Aryloxyphosphonitriles. J Am Chem Soc 87:4216–4217CrossRefGoogle Scholar
  6. 6.
    Allcock HR, Kugel RL, Valan KJ (1966) High Molecular Weight Poly[alkoxy- and aryloxyphosphazenes]. Inorg Chem 5:1709–1715Google Scholar
  7. 7.
    Allcock HR, Kugel RL (1966) High Molecular Weight Poly(diamino-phosphazenes). Inorg Chem 5:1716–1718Google Scholar
  8. 8.
    Allcock HR, Lampe FW, Mark JE (2003) Contemporary polymer chemistry, 3rd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  9. 9.
    Odian G (2004) Principles of polymerization, 4th edn. John Wiley & Sons, HobokenGoogle Scholar
  10. 10.
    Flindt EP, Rose H (1977) Trivalent-pentavalente Phosphosverbindi-dungen/Phosphazene. IV. Z Anorg Allg Chem 428:204Google Scholar
  11. 11.
    Wisian-Neilson P, Neilson RH (1980) Poly(dimethylphosphazene), (Me2)PN)n. J Am Chem Soc 102:2848CrossRefGoogle Scholar
  12. 12.
    Neilson RH, Wisian-Neilson P (1988) Poly(alkyl/aryl phosphazenes). Chem Rev 88:54Google Scholar
  13. 13.
    Wisian-Neilson P, Jung J-H, Potluri SK (2006) Cyclic and Polymeric Alky/Aryl Phosphazenes in Modern Aspects of Main Group Chemistry. ACS symp. series 917, Washington, DC, pp 335–346Google Scholar
  14. 14.
    Montague RA, Matyjaszewski K (1990) Synthesis of Poly[bis(trifluoroethoxy)-phosphazene] Under Mild Conditions Using a Fluoride Initiator. J Am Chem Soc 112:6721CrossRefGoogle Scholar
  15. 15.
    Matyjaszewski K, Moore MM, White ML (1993) Synthesis of Polyphosphazene Block Copolymers Bearing Alkoxyethoxy and Trifluoroethoxy Groups 26:6741–6748Google Scholar
  16. 16.
    (a) Honeyman CH, Manners I, Morrissey CT, Allcock HR (1995) Ambient Temperature Synthesis of Poly(dichlorophosphazene) with Molecular Weight Control. J Am Chem Soc 117:7035–7036. (b) Allcock HR, Reeves SD, Nelson JM, Crane CA, Manners I (1997) Polyphosphazene Block Copolymers via the Living Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules 30:2213–2215Google Scholar
  17. 17.
    De Jaeger R, Potin P (2004) Ch.2. In: Gleria M, De Jaeger R (eds) Synthesis and characterization of poly(organophosphazenes). Nova Publishers, New YorkGoogle Scholar
  18. 18.
    Allcock HR (2004) Ch. 3. In Gleria M, De Jaeger R (eds) Synthesis and characterization of poly(organophosphazenes). Nova Publishers, New YorkGoogle Scholar
  19. 19.
    Allcock HR, Morozowich NL (2012) Bioerodible Polyphosphazenes and their Medical Potential. RSC Polym Chem 3:578–590CrossRefGoogle Scholar
  20. 20.
    Allcock HR, Fuller TJ (1980) Phosphazene High Polymers with Steroidal Side Groups. Macromolecules 13:1338–1345CrossRefGoogle Scholar
  21. 21.
    Allcock HR, Greigger PP, Gardner JE, Schmutz JL (1979) Water Soluble Polyphosphazenes as Carrier Molecules for Iron(III) and Iron(II) Porphyrins. J Am Chem Soc 101:606–611CrossRefGoogle Scholar
  22. 22.
    Allcock HR, Scopelianos AG, O’Brien JP, Bernheim MY (1981) Synthesis and Structure of Carborane-Substituted Cyclic and Polymeric Phosphazenes. J Am Chem Soc 103:350–357CrossRefGoogle Scholar
  23. 23.
    Modzelewski T, Allcock HR (2014) An Unusual Polymer Architecture for the Generation of Elastomeric Properties in Fluorinated Polyphosphazenes. Macromolecules 47:6776–6782CrossRefGoogle Scholar
  24. 24.
    Modzelewski T, Wilts E, Allcock HR (2015) Elastomeric Polyphosphazenes with Phenoxy-cyclotriphosphazene Side Groups. Macromolecules 48:7543–7549CrossRefGoogle Scholar
  25. 25.
    Li Z, Chen C, Tian Z, Modzelewski T, Allcock HR (2016) Polyphosphazenes with Cyclotetraphosphazene Side Groups: Synthesis and Elastomeric Properties. J Inorg Organomet Mater Polym 26:667–674CrossRefGoogle Scholar
  26. 26.
    Modzelewski T, Wonderling NM, Allcock HR (2015) Polyphosphazene Elastomers Containing Interdigitated Oligo-p-phenyleneoxy Side Groups: Synthesis, Mechanical Properties and X-ray Scattering Studies. Macromolecules 48:4882–4890CrossRefGoogle Scholar
  27. 27.
    Tong C, Tian Z, Chen C, Li Z, Modzelewski T, Allcock HR (2016) Synthesis and Characterization of Trifluoroethoxy Polyphosphazenes Containing POSS Side Groups. Macromolecules 49:1313–1320CrossRefGoogle Scholar
  28. 28.
    Li Z, Allcock HR (2015) Polyphosphazenes with Immobilized Dyes as Potential Color Filter Materials. Appl Mater Interface 1:13518–13523CrossRefGoogle Scholar
  29. 29.
    Weikel AL, Lee D, Krogman NR, Allcock HR (2010) Phase Changes of Poly(alkoxyphosphazene) and their Behavior in the Presence of Oligoisobutylene. J Polym Eng Sci 92A:114–125Google Scholar
  30. 30.
    Tian Z, Liu X, Manseri A, Ameduri B, Allcock HR (2013) Limits to Expanding the PN-F Series of Polyphosphazene Elastomers. Polym Eng Sci 54:1827–1832CrossRefGoogle Scholar
  31. 31.
    Singler RE, Schneider NS, Hagnauer GL (1975) Polyphosphazenes: Synthesis-Properties-Applications. Polym Eng Sci 51:321–338CrossRefGoogle Scholar
  32. 32.
    Allcock HR, Mang MN, Dembek AA, Wynne KJ (1989) Poly(aryloxyphosphazenes) with Phenylphenoxy and Related Bulky Side Groups. Synthesis, Thermal Transition Behavior and Optical Properties. Macromolecules 22:4179–4190CrossRefGoogle Scholar
  33. 33.
    Reed CA, Taylor GP, Guigley KS, Kully KS, Bernheim KA, Coleman MM, Allcock HR (2000) Polyurethane/Poly[bis(carboxylato-phenoxy)phosphazene] Blends and their Potential as Flame Retardant Materials. J Polym Sci Eng 40:465–472CrossRefGoogle Scholar
  34. 34.
    Chen C, Liu X, Tian Z, Allcock HR (2012) 2,2,2-Trichloroethoxy-Substituted Polyphosphazenes: Synthesis, Characterization, and Properties. Macromolecules 45:9085–9091CrossRefGoogle Scholar
  35. 35.
    Weikel AL, Owens SG, Fushimi T, Allcock HR (2012) Synthesis and Characterization of Methionine- and Cysteine-Substituted Phosphazenes. Macromolecules 4:5205–5210CrossRefGoogle Scholar
  36. 36.
    Weikel AL, Lee D, Krogman NR, Allcock HR (2010) Phase Changes of Poly(alkoxyphosphazenes) and Their Behavior in the Presence of Oligoisobutylene. J Polym Sci Eng 92A:114–125Google Scholar
  37. 37.
    Nichol JL, Hotham IT, Allcock HR (2014) Ethoxyphosphazene Polymers and their Hydrolytic Behavior. Polym Degrad Stab 109:92–96CrossRefGoogle Scholar
  38. 38.
    Tian Z, Hess A, Fellin CR, Nulwala H, Allcock HR (2015) Phosphazene High Polymers and Models with Cyclic Aliphatic Side Structure-Property Relationships. Macromolecules 48:4301–4311CrossRefGoogle Scholar
  39. 39.
    Kojima M, Magill J (1985) Phase Transitions in Polyphosphazene Films: Poly[bis(trifluoroethoxy)phosphazene]. Macromol Chem Phys 186:649–663Google Scholar
  40. 40.
    Rose SH, Cable J (1969) U.S. Govt Research Report, AD 693,28Google Scholar
  41. 41.
    Schneider NS, Desper CR, Singler RE (1976) The Thermal Transition Behavior of Polyorganophosphazenes. J Appl Polym Sci 20:3087–3103CrossRefGoogle Scholar
  42. 42.
    Allcock HR, Kim C (1990) Liquid Crystalline Phosphazenes Bearing Biphenyl Mesogenic Groups. Macromolecules 23:3881–3887CrossRefGoogle Scholar
  43. 43.
    Blonsky PM, Shriver DF, Austin PE, Allcock HR (1984) Polyphosphazene Solid Electrolytes. J Am Chem Soc 106:6854–6855CrossRefGoogle Scholar
  44. 44.
    Allcock HR, Austin PE, Neenan TX, Sisko JT, Blonsky PM, Shriver DF (1986) Polyphosphazenes with Etheric Side Groups: Prospective Biomedical and Solid Electrolyte Polymers. Macromolecules 19:1508–1512CrossRefGoogle Scholar
  45. 45.
    Allcock HR, Kwon S, Riding GH, Fitzpatrick RJ, Bennett JL (1988) Hydrophilic Polyphosphazenes as Hydrogels: Radiation Crosslinking and Hydrogel Characteristics of Poly[bis(methoxyethoxyethoxy)phosphazene]. Biomaterials 19:509–513CrossRefGoogle Scholar
  46. 46.
    Greigger PP, Allcock HR (1979) A Spirocyclophosphazene with Iron-Phosphorus Bonds and a P-Fe-Fe Three-Membered Ring. J Am Chem Soc 101:2492Google Scholar
  47. 47.
    Allcock HR, Manners I, Mang MN, Parvez M (1990) Transition Metal Derivatives of Phosphinophosphazenes: X-Ray Crystal Structures of N3P3Cl4PhPh2, N3P3Cl4PhPPh4,Cr(Co)5 and N3P3Cl4PhPPh2.Ru3(CO)11. Inorg Chem 29:522–529Google Scholar
  48. 48.
    Manners I, Riding GH, Dodge JA, Allcock HR (1989) Role of Ring Strain and Steric Hindrance in a New Method for the Synthesis of Macrocyclic and High Polymeric Phosphazenes. J Am Chem Soc 111:3067–3069CrossRefGoogle Scholar
  49. 49.
    Diefenbach U, Cannon AM, Stromberg BE, Olmeijer DL, Allcock HR (2000) Synthesis and Metal Coordination of Thioether-Containing Cyclo- and Poly(organophosphazenes). J Appl Polym Sci 78:650–661CrossRefGoogle Scholar
  50. 50.
    Liu X, Breon J, Chen C, Allcock HR (2012) Substituent Exchange Reactions of Linear Oligomeric Aryloxy Phosphazenes with 2,2,2-Trifluoroethoxide. Inorg Chem 51(21):11910–11916Google Scholar
  51. 51.
    Liu X, Breon JP, Chen C, Allcock HR (2012) Substituent Exchange Reactions of Trimeric and Tetrameric Arylocyclophosphazenes with Sodium 2,2,2-Trifluoroethoxide. Roy Soc Chem Dalton Trans 41:2100–2109CrossRefGoogle Scholar
  52. 52.
    Allcock HR, Steely L, Kim S, Kang B (2007) Plasma Surface Functionalization of Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Films and Nanofibers. Langmuir 23:8103–8107CrossRefGoogle Scholar
  53. 53.
    Tian Z, Chen C, Allcock HR (2014) Ethoxyphosphazene Polymers and their Hydrolytic Behavior. Macromolecules 47:1065–1072CrossRefGoogle Scholar
  54. 54.
    Gleria M, De Jaeger R (eds) (2003) Applicative aspects of poly(organophosphazenes). Nova Publishers, New YorkGoogle Scholar
  55. 55.
    Chhour P, Gallo N, Cheheltani R, Williams D, Al-Zaki A, Paik T, Nichol JL, Tian Z, Naha PC, Allcock HR, Murray CB, Sourkas TA, Cormode DP (2014) Nano-Disco Balls: Control over Surface versus Core Loading of Active Nanocrystals into Polymer Nanoparticles. ACS Nano 8(9):9143–9153CrossRefGoogle Scholar
  56. 56.
    Liu X, Tian Z, Chen C, Allcock HR (2013) UV-Cleavable Unimolecular Micelles: Synthesis and Characterization Toward Photocontrolled Drug Release Carriers. Polym Chem 4:1114–1125CrossRefGoogle Scholar
  57. 57.
    Liu X, Zhang H, Tian Z, Sen A, Allcock HR (2012) Preparation of Quaternized Organic-Inorganic Hybrid Brush Polyphosphazene-co-poly-[2-(dimethylamino)ethylmethacrylate] Electrospun Fibers and their Antibacterial Properties. Polym Chem 3:2082–2091CrossRefGoogle Scholar
  58. 58.
    Tian Z, Zhang Y, Chen C, Guiltinan MJ, Allcock HR (2013) Biodegradable Polyphosphazenes Containing Antibiotics: Synthesis, Characterization, and Hydrolytic Release Behavior. Polymer 4:1826–1835CrossRefGoogle Scholar
  59. 59.
    Allcock HR, Kwon S (1989) An Ionically-Crosslinkable Polyphosphazene: Poly[di(carboxylatophenoxy)phosphazene] and its Hydrogels and Membranes. Macromolecules 22:75–79CrossRefGoogle Scholar
  60. 60.
    Peach MS, James R, Toti US, Deng M, Morozowich NL, Allcock HR, Laurencin CT, Kumbar SG (2012) Polyphosphazene Functionalized Polyester Fiber Matrices for Tendon Tissue Engineering: In Vitro Evaluations of Human Mesenchymal Stem Cells. Biomed Mater 7:1–13Google Scholar
  61. 61.
    Nichol JL, Morozowich NL, Allcock HR (2013) Biodegradable Alanine and Phenylalanine Alkyl Ester Polyphosphazenes as Potential Ligament and Tendon Tissue Scaffolds. RSC Polym Chem 4:600–606CrossRefGoogle Scholar
  62. 62.
    Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, Ulery B, Maxxocca AD, McCarthy MB, Morozowich NL, Allcock HR, Laurencin CT (2012) Design and Optimization of Polyphosphazenes Functionalized Fiber Matrices for Soft Tissue Regeneration. J Biomed Nanotechnol 8:107–124CrossRefGoogle Scholar
  63. 63.
    Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, Laurencin CT (2011) Biomimetic Structures: Biological Implications of Dipeptide-substituted Polyphosphazene-Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration. Adv Funct Mater 21:2641–2651CrossRefGoogle Scholar
  64. 64.
    Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT (2010) Polyphosphazene Polymers for Tissue Engineering: An Analysis of Materials Synthesis, Characterization, and Applications. Soft Matter 6:3119–3132CrossRefGoogle Scholar
  65. 65.
    Gettleman L (2003) Ch. 2. In: Gleria M, De Jaeger R (eds) Applicative aspects of poly(organophosphazenes). Nova Publishers, New YorkGoogle Scholar
  66. 66.
    Celonova Bio-Sciences (2010) Peachtree, Georgia, promotional material (2017) U.S. Patent US7922764Google Scholar
  67. 67.
    Fei S-T, Lee S-HA, Pursel SM, Bashem J, Hess A, Grimes CA, Horn MW, Mallouk TE, Allcock HR (2011) Electrolyte Infiltration in Phosphazene-Based Dye-Sensitized Solar Cells. J Power Sources 196:5223–5230CrossRefGoogle Scholar
  68. 68.
    Fei S-T, Allcock HR (2010) Methoxyethoxyethoxyphosphazenes as Ionic Fire Retardant Additives for Lithium Battery Systems. Power Sources 195(7):2082–2088Google Scholar
  69. 69.
    Fei S-T, Allcock HR (2009) Recent Progress with Ethyleneoxy Phosphazenes as Lithium Battery Electrolytes. Mater Res Soc Symp. 1127-T01-05Google Scholar
  70. 70.
    Steely LB, Li Q, Badding JV, Allcock HR (2008) Foam Formation with Fluorinated Polyphosphazenes by Liquid CO2 Processing. Polym Sci Eng 48:683–686Google Scholar
  71. 71.
    Mukunoki Y, Kubota T (1992) Fuji Photo Film, Japan, U.S. Patent 5,135,846Google Scholar
  72. 72.
    Fukuwatari N, Ueda E, Kurachi Y (1998) Konica Corp., Japan, U.S. Patent 5,840,471Google Scholar
  73. 73.
    Ishikawa W, Fukuwatari N. Konica Corp., Japan, European Patent ApplicationGoogle Scholar
  74. 74.
    Reed CA, Taylor JP, Guigley KS, Kully KS, Bernheim KA, Coleman MM, Allcock HR (2000) Polyurethane/Poly[bis(carboxylato-phenoxy)phosphazene] Blends and their Potential as Flame Retardant Materials. Report to U.S. Federal Aviation AdministrationGoogle Scholar
  75. 75.
    Olshavsky M, Allcock HR (1997) Polyphosphazenes with High Refractive Indices: Optical Dispersion and Molar Reactivity. Macromolecules 30:4179–4183CrossRefGoogle Scholar
  76. 76.
    Allcock HR, Bender JD, Chang Y, McKenzie M, Fone MM (2003) Controlled Refractive Index Polymers; Polyphosphazenes with Chlorinated- and Fluoroinated-Aryloxy and Alkoxy Side Groups. Chem Mater 15:473–477Google Scholar
  77. 77.
    Allcock HR, Chang Y, Stone DA (2006) Control of the Conjugation Length and Solubility in Electroluminescent Polymers. J Polym Sci 44:69–76Google Scholar
  78. 78.
    Stewart FF, Luther TA, Harrup MK, Orme CJ (2003) In: Gleria M, De Jaegar R (eds) Applicative aspects of poly(organophosphazenes). Nova Publishers, New York. Chapter 10Google Scholar
  79. 79.
    Venna SR, Spore A, Tian Z, Marti AM, Albenze EJ, Nulwala HB, Rosi NL, Luebke DR, Hopkinson DP, Allcock HR (2017) Polyphosphazene Polymer Development for Mixed Matrix Membranes Using SIFSIX-Cu-2i as Performance Enhancement Filler Particles. J Membr Sci 535:103–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations