Advertisement

Autophagy: ‘Self-Eating’ Your Way to Longevity

  • Charlotte J. Pattison
  • Viktor I. KorolchukEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 90)

Abstract

Ageing is the gradual decline in biological function both at the cellular and organismal level. One of the key characteristics of cellular ageing is the accumulation of damaged proteins and organelles which, in turn, can cause cellular toxicity and death. Autophagy is an evolutionarily conserved process that is responsible for the sequestration of damaged or surplus cytoplasmic components which are then delivered to the lysosome for degradation. This house-keeping mechanism is essential to maintain cellular homeostasis and survival, particularly during stress. A decline or loss of sensitivity/responsiveness of autophagy is intimately linked with an accelerated rate of ageing as well as many age-related diseases including neurodegeneration, cancer and metabolic disease where damage accumulation exceeds damage removal. This chapter summarises current knowledge regarding the relationship between autophagy and ageing and outlines some strategies that can be implemented to promote the anti-ageing effects of autophagy to improve human health and lifespan.

Keywords

Autophagy Damaged proteins Lysosome Cellular homeostasis Age-related disease Anti-ageing 

References

  1. Alirezaei M, Kemball CC, Flynn CT et al (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6(6):702–710.  https://doi.org/10.4161/auto.6.6.12376 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anandatheerthavarada HK, Biswas G, Robin M-A, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimers amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161(1):41–54.  https://doi.org/10.1083/jcb.200207030 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anson RM, Guo Z, Cabo RD et al (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci 100(10):6216–6220.  https://doi.org/10.1073/pnas.1035720100 CrossRefPubMedGoogle Scholar
  4. Appelqvist H, Wäster P, Kågedal K, Öllinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5(4):214–226.  https://doi.org/10.1093/jmcb/mjt022 CrossRefPubMedGoogle Scholar
  5. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701.  https://doi.org/10.1083/jcb.200803137 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236.  https://doi.org/10.1038/nature10600 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530(7589):184–189.  https://doi.org/10.1038/nature16932 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18):5747–5763.  https://doi.org/10.1128/mcb.02070-07 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barnett A, Brewer GJ (2011) Autophagy in aging and Alzheimer’s disease: pathologic or protective? J Alzheimers Dis 25(3):385–394.  https://doi.org/10.3233/JAD-2011-101989 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barsoum MJ, Yuan H, Gerencser AA et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25(16):3900–3911.  https://doi.org/10.1038/sj.emboj.7601253 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bartolomeo SD, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191(1):155–168.  https://doi.org/10.1083/jcb.201002100 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barzilai N, Ferrucci L (2012) insulin resistance and aging: a cause or a protective response? J Gerontol Ser A Biol Med Sci 67(12):1329–1331.  https://doi.org/10.1093/gerona/gls145 CrossRefGoogle Scholar
  13. Bayliss JA, Lemus MB, Stark R et al (2016) Ghrelin-AMPK signaling mediates the neuroprotective effects of calorie restriction in Parkinsons disease. J Neurosci 36(10):3049–3063.  https://doi.org/10.1523/jneurosci.4373-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7(1):29–39.  https://doi.org/10.1513/pats.200909-102js CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bergmann M, Schütt F, Holz FG, Kopitz J (2001) does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydrolases? Exp Eye Res 72(2):191–195.  https://doi.org/10.1006/exer.2000.0949 CrossRefGoogle Scholar
  16. Bergmann M, Schütt F, Holz FG, Kopitz J (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18(3):562–564.  https://doi.org/10.1096/fj.03-0289fje CrossRefPubMedGoogle Scholar
  17. Berridge MJ (2015) Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 460(1):53–71.  https://doi.org/10.1016/j.bbrc.2015.01.008 CrossRefPubMedGoogle Scholar
  18. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21(3):319–329.  https://doi.org/10.1016/j.chembiol.2013.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Blasiak J, Petrovski G, Veréb Z et al (2014) oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int 2014:1–7.  https://doi.org/10.1155/2014/768026 CrossRefGoogle Scholar
  20. Calise J, Powell SR (2013) The ubiquitin proteasome system and myocardial ischemia. Am J Phys Heart Circ Phys 304(3):337–349.  https://doi.org/10.1152/ajpheart.00604.2012 CrossRefGoogle Scholar
  21. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11(11):27–31.  https://doi.org/10.1016/s0962-8924(01)82148-6 CrossRefGoogle Scholar
  22. Carra S (2009) The stress-inducible HspB8-Bag3 complex induces the eIF2α kinase pathway: Implications for protein quality control and viral factory degradation? Autophagy 5(3):428–429.  https://doi.org/10.4161/auto.5.3.7894 CrossRefPubMedGoogle Scholar
  23. Carroll B, Korolchuk VI (2018) Nutrient sensing, growth and senescence. FEBS J 285:1948.  https://doi.org/10.1111/febs.14400 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carroll B, Hewitt G, Korolchuk VI (2013) Autophagy and ageing: implications for age-related neurodegenerative diseases. Essays Biochem 55(1):119–131.  https://doi.org/10.1042/bse0550119 CrossRefPubMedGoogle Scholar
  25. Castellano BM, Thelen AM, Moldavski O et al (2017) Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex. Science 355(6331):1306–1311.  https://doi.org/10.1126/science.aag1417 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen C-C, Jeon S-M, Bhaskar PT et al (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18(4):592–604.  https://doi.org/10.1016/j.devcel.2010.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen Y, Sawada O, Kohno H et al (2013a) Autophagy protects the retina from light-induced degeneration. J Biol Chem 288(11):7506–7518.  https://doi.org/10.1074/jbc.m112.439935 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen K, Kobayashi S, Xu X et al (2013b) AMP activated protein kinase is indispensable for myocardial adaptation to caloric restriction in mice. PLoS One 9(3):e59682.  https://doi.org/10.1371/journal.pone.0059682 CrossRefGoogle Scholar
  29. Chow VW, Mattson MP, Wong PC, Gleichmann M (2009) An overview of APP processing enzymes and products. Neuro Mol Med 12(1):1–12.  https://doi.org/10.1007/s12017-009-8104-z CrossRefGoogle Scholar
  30. Citron M, Diehl TS, Gordon G et al (1996) Evidence that the 42- and 40-amino acid forms of amyloid protein are generated from the -amyloid precursor protein by different protease activities. Proc Natl Acad Sci 93(23):13170–13175.  https://doi.org/10.1073/pnas.93.23.13170 CrossRefPubMedGoogle Scholar
  31. Coppé J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868.  https://doi.org/10.1371/journal.pbio.0060301 CrossRefPubMedGoogle Scholar
  32. Crippa V, Boncoraglio A, Galbiati M et al (2013) Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Front Cell Neurosci 7:234.  https://doi.org/10.3389/fncel.2013.00234 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24(12):604–612.  https://doi.org/10.1016/j.tig.2008.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cuervo AM, Macian F (2012) Autophagy, nutrition and immunology. Mol Asp Med 33(1):2–13.  https://doi.org/10.1016/j.mam.2011.09.001 CrossRefGoogle Scholar
  35. Dagon Y, Mantzoros C, Kim Y-B (2015) Exercising insulin sensitivity: AMPK turns on autophagy! Metabolism 64(6):655–657.  https://doi.org/10.1016/j.metabol.2015.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Decuypere J-P, Parys JB, Bultynck G (2012) Regulation of the autophagic Bcl-2/Beclin 1 interaction. Cells 1(3):284–312.  https://doi.org/10.3390/cells1030284 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15(8):305–309.  https://doi.org/10.1016/0968-0004(90)90019-8 CrossRefPubMedGoogle Scholar
  38. Dumont M, Wille E, Stack C et al (2009) Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. FASEB J 23(8):2459–2466.  https://doi.org/10.1096/fj.09-132928 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Egan D, Kim J, Shaw RJ, Guan K-L (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644.  https://doi.org/10.4161/auto.7.6.15123 CrossRefPubMedGoogle Scholar
  40. Fabrizio P, Hoon S, Shamalnasab M et al (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6(7):e1001024.  https://doi.org/10.1371/journal.pgen.1001024 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fedarko NS (2011) The biology of aging and frailty. Clin Geriatr Med 27(1):27–37.  https://doi.org/10.1016/j.cger.2010.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ferreira-Marques M, Aveleira CA, Carmo-Silva S et al (2016) Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging 8(7):1470–1484.  https://doi.org/10.18632/aging.100996 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Friedrich RP, Tepper K, Ronicke R et al (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc Natl Acad Sci 107(5):1942–1947.  https://doi.org/10.1073/pnas.0904532106 CrossRefPubMedGoogle Scholar
  44. Funderburk SF, Marcellino BK, Yue Z (2010) Cell “Self-Eating” (Autophagy) mechanism in Alzheimers disease. Mount Sinai J Med J Transl Pers Med 77(1):59–68.  https://doi.org/10.1002/msj.20161 CrossRefGoogle Scholar
  45. Gamerdinger M, Hajieva P, Kaya AM et al (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28(7):889–901.  https://doi.org/10.1038/emboj.2009.29 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gamerdinger M, Kaya AM, Wolfrum U et al (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–156.  https://doi.org/10.1038/embor.2010.203 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ganley IG, Lam DH, Wang J et al (2009) ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305.  https://doi.org/10.1074/jbc.m900573200 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gladyshev VN (2014) The free radical theory of aging is dead. long live the damage theory! Antioxid Redox Signal 20(4):727–731.  https://doi.org/10.1089/ars.2013.5228 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Golestaneh N, Chu Y, Xiao Y-Y et al (2017) Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 8(1):e2537.  https://doi.org/10.1038/cddis.2016.453 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Guo JY, Chen H-Y, Mathew R et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470.  https://doi.org/10.1101/gad.2016311 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Guo X-L, Li D, Sun K et al (2012) Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med 91(4):473–483.  https://doi.org/10.1007/s00109-012-0966-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guo JY, Teng X, Laddha SV et al (2016) Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev 30(15):1704–1717.  https://doi.org/10.1101/gad.283416.116 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hailey DW, Rambold AS, Satpute-Krishnan P et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667.  https://doi.org/10.1016/j.cell.2010.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hallam D, Collin J, Bojic S et al (2017) An induced pluripotent stem cell patient specific model of complement factor H (Y402H) polymorphism displays characteristic features of age-related macular degeneration and indicates a beneficial role for UV light exposure. Stem Cells 35:2305–2320.  https://doi.org/10.1002/stem.2708 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787.  https://doi.org/10.1074/jbc.m603783200 CrossRefPubMedGoogle Scholar
  56. Han SJ, Min HJ, Yoon SC et al (2015) HMGB1 in the pathogenesis of ultraviolet-induced ocular surface inflammation. Cell Death Dis 6(8):e1863.  https://doi.org/10.1038/cddis.2015.199 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14(11):2179–2190.  https://doi.org/10.1089/ars.2010.3488 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300.  https://doi.org/10.1093/geronj/11.3.298 CrossRefPubMedGoogle Scholar
  59. Hayflick L, Moorhead P (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621.  https://doi.org/10.1016/0014-4827(61)90192-6 CrossRefPubMedGoogle Scholar
  60. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93.  https://doi.org/10.1146/annurev-genet-102808-114910 CrossRefPubMedPubMedCentralGoogle Scholar
  61. He C, Bassik MC, Moresi V et al (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515.  https://doi.org/10.1038/nature10758 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Höhn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 1(1):140–144.  https://doi.org/10.1016/j.redox.2013.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Holick M, Schlogl M (2014) Vitamin D and neurocognitive function. Clin Interv Aging 9:559.  https://doi.org/10.2147/cia.s51785 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Holliday R (1995) Understanding ageing. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  65. Holz FG, Schütt F, Kopitz J et al (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Investig Ophthalmol Vis Sci 40(3):737–743Google Scholar
  66. Høyer-Hansen M, Bastholm L, Mathiasen IS et al (2005) Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ 12(10):1297–1309.  https://doi.org/10.1038/sj.cdd.4401651 CrossRefPubMedGoogle Scholar
  67. Huynh KK, Eskelinen E-L, Scott CC et al (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26(2):313–324.  https://doi.org/10.1038/sj.emboj.7601511 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ilagan E, Manning BD (2016) Emerging role of mTOR in response to cancer therapeutics. Trends in Cancer 2(5):241–251.  https://doi.org/10.1016/j.trecan.2016.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Itakura E, Kishi-Itakura C, Mizushima N (2012) The Hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151(6):1256–1269.  https://doi.org/10.1016/j.cell.2012.11.001 CrossRefPubMedGoogle Scholar
  70. Jaeger PA, Pickford F, Sun C-H et al (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5(6):e11102.  https://doi.org/10.1371/journal.pone.0011102 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417.  https://doi.org/10.1016/j.mam.2012.03.009 CrossRefGoogle Scholar
  72. Jewell JL, Guan K-L (2013) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38(5):233–242.  https://doi.org/10.1016/j.tibs.2013.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ju Y, Xu T, Zhang H, Yu A (2014) FOXO1-dependent DNA damage repair is regulated by JNK in lung cancer cells. Int J Oncol 44(4):1284–1292.  https://doi.org/10.3892/ijo.2014.2269 CrossRefPubMedGoogle Scholar
  74. Jube S, Rivera ZS, Bianchi ME et al (2012) Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 72(13):3290–3301.  https://doi.org/10.1158/0008-5472.can-11-3481 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21(23):3061–3066.  https://doi.org/10.1101/gad.1600707 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Jung KJ, Lee EK, Kim JY et al (2009) Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm Res 58(3):143–150.  https://doi.org/10.1007/s00011-008-7227-2 CrossRefPubMedGoogle Scholar
  77. Jung CH, Ro S-H, Cao J et al (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295.  https://doi.org/10.1016/j.febslet.2010.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jutras I, Laplante A, Boulais J et al (2005) γ-Secretase is a functional component of phagosomes. J Biol Chem 280(43):36310–36317.  https://doi.org/10.1074/jbc.m504069200 CrossRefPubMedGoogle Scholar
  79. Kadavath H, Hofele RV, Biernat J et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci 112(24):7501–7506.  https://doi.org/10.1073/pnas.1504081112 CrossRefPubMedGoogle Scholar
  80. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714.  https://doi.org/10.1016/j.redox.2014.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Karlawish J, Jack CR, Rocca WA et al (2017) Alzheimers disease: the next frontier—special report 2017. Alzheimers Dementia 13(4):374–380.  https://doi.org/10.1016/j.jalz.2017.02.006 CrossRefGoogle Scholar
  82. Karlsson M, Frennesson C, Gustafsson T et al (2013) Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Exp Eye Res 116:359–365.  https://doi.org/10.1016/j.exer.2013.10.014 CrossRefPubMedGoogle Scholar
  83. Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA (2010) Mitochondrial dna damage as a potential mechanism for age-related macular degeneration. Invest Opthalmol Vis Sci 51(11):5470.  https://doi.org/10.1167/iovs.10-5429 CrossRefGoogle Scholar
  84. Kelleher RJ, Shen J (2017) Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci 114(4):629–631.  https://doi.org/10.1073/pnas.1619574114 CrossRefPubMedGoogle Scholar
  85. Khalil H, Tazi M, Caution K et al (2016) Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 11(5):381–388.  https://doi.org/10.1080/15592294.2016.1144007 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kim DH, Kim JY, Yu BP, Chung HY (2007) The activation of NF-κB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9(1):33–47.  https://doi.org/10.1007/s10522-007-9114-6 CrossRefPubMedGoogle Scholar
  87. Kim E, Goraksha-Hicks P, Li L et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945.  https://doi.org/10.1038/ncb1753 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kirkin V, Mcewan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269.  https://doi.org/10.1016/j.molcel.2009.04.026 CrossRefPubMedGoogle Scholar
  89. Kongara S, Karantza V (2012) The interplay between autophagy and ROS in tumorigenesis. Front Oncol 2:171.  https://doi.org/10.3389/fonc.2012.00171 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kongara S, Kravchuk O, Teplova I et al (2010) Autophagy regulates Keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol Cancer Res 8(6):873–884.  https://doi.org/10.1158/1541-7786.mcr-09-0494 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kopitz J (1990) Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 111(3):941–953.  https://doi.org/10.1083/jcb.111.3.941 CrossRefPubMedGoogle Scholar
  92. Korolchuk VI, Miwa S, Carroll B, Zglinicki TV (2017) Mitochondria in cell senescence: is mitophagy the weakest link? EBio Med 21:7–13.  https://doi.org/10.1016/j.ebiom.2017.03.020 CrossRefGoogle Scholar
  93. Krohne TU, Stratmann NK, Kopitz J, Holz FG (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3):465–471.  https://doi.org/10.1016/j.exer.2009.12.011 CrossRefPubMedGoogle Scholar
  94. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293.  https://doi.org/10.1016/j.cell.2012.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lee J-H, Yu WH, Kumar A et al (2010) Lysosomal proteolysis and autophagy require Presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158.  https://doi.org/10.1016/j.cell.2010.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Levine B, Kroemer G (2008a) SnapShot: macroautophagy. Cell 132(1):162.  https://doi.org/10.1016/j.cell.2007.12.026 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Levine B, Kroemer G (2008b) Autophagy in the pathogenesis of disease. Cell 132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Li Z, Wang J, Yang X (2015) Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci 11(6):672–678.  https://doi.org/10.7150/ijbs.11883 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Li H, Chintalapudi SR, Jablonski MM (2017) Current drug and molecular therapies for the treatment of atrophic age-related macular degeneration: phase I to phase III clinical development. Expert Opin Investig Drugs 26(10):1103–1114.  https://doi.org/10.1080/13543784.2017.1369042 CrossRefPubMedGoogle Scholar
  100. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676.  https://doi.org/10.1038/45257 CrossRefGoogle Scholar
  101. Lichtenthaler SF (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr Alzheimer Res 9(2):165–177.  https://doi.org/10.2174/156720512799361655 CrossRefPubMedGoogle Scholar
  102. Lindqvist LM, Heinlein M, Huang DCS, Vaux DL (2014) Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci 111(23):8512–8517.  https://doi.org/10.1073/pnas.1406425111 CrossRefPubMedGoogle Scholar
  103. Liu H-Y, Han J, Cao SY et al (2009) Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. J Biol Chem 284(45):31484–31492.  https://doi.org/10.1074/jbc.m109.033936 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Liu M, Zhang P, Chen M et al (2011) Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats. Age 34(3):621–632.  https://doi.org/10.1007/s11357-011-9259-8 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Liu Z, Li T, Li P et al (2015) The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxidative Med Cell Longev 2015:1–12.  https://doi.org/10.1155/2015/352723 CrossRefGoogle Scholar
  106. Lu H, Huang H (2011) FOXO1: a potential target for human diseases. Curr Drug Targets 12(9):1235–1244.  https://doi.org/10.2174/138945011796150280 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Manczak M, Anekonda TS, Henson E et al (2006) Mitochondria are a direct site of Aβaccumulation in Alzheimers disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15(9):1437–1449.  https://doi.org/10.1093/hmg/ddl066 CrossRefPubMedGoogle Scholar
  108. Marquez RT, Xu L (2012) Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/ apoptosis toggle switch. Am J Cancer Res 2(2):214–221PubMedPubMedCentralGoogle Scholar
  109. Martinez-Lopez N, Athonvarangkul D, Singh R (2015) Autophagy and aging. Longevity Gene Adv Exp Med Biol 847:73–87.  https://doi.org/10.1007/978-1-4939-2404-2_3 CrossRefGoogle Scholar
  110. Matecic M, Smith DL, Pan X et al (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6(4):e1000921.  https://doi.org/10.1371/journal.pgen.1000921 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075.  https://doi.org/10.1016/j.cell.2009.03.048 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Matsui Y, Takagi H, Qu X et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922.  https://doi.org/10.1161/01.res.0000261924.76669.36 CrossRefPubMedGoogle Scholar
  113. Meisenberg G, Simmons WH (2017) Chapter 32: integration of metabolism: anti-aging treatments are being investigated. In: Principles of medical biochemistry. Elsevier, Beijing, p 565Google Scholar
  114. Michalska-Małecka K, Kabiesz A, Nowak M, Śpiewak D (2015) Age related macular degeneration – challenge for future: pathogenesis and new perspectives for the treatment. Eur Geriatr Med 6(1):69–75.  https://doi.org/10.1016/j.eurger.2014.09.007 CrossRefGoogle Scholar
  115. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86.  https://doi.org/10.1146/annurev-physiol-012110-142317 CrossRefPubMedGoogle Scholar
  116. Miracco C, Cosci E, Oliveri G et al (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30(2):429–436.  https://doi.org/10.3892/ijo.30.2.429 CrossRefPubMedGoogle Scholar
  117. Mitter SK, Song C, Qi X et al (2014) Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10(11):1989–2005.  https://doi.org/10.4161/auto.36184 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mizushima N (2003) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111.  https://doi.org/10.1091/mbc.e03-09-0704 CrossRefPubMedGoogle Scholar
  119. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873.  https://doi.org/10.1101/gad.1599207 CrossRefPubMedGoogle Scholar
  120. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830.  https://doi.org/10.1038/ncb0910-823 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Morley JE, Chahla E, Alkaade S (2010) Antiaging, longevity and calorie restriction. Curr Opin Clin Nutr Metab Care 13(1):40–45.  https://doi.org/10.1097/mco.0b013e3283331384 CrossRefPubMedGoogle Scholar
  122. Nassif M, Hetz C (2012) Autophagy impairment: a crossroad between neurodegeneration and tauopathies. BMC Biol 10(1):78.  https://doi.org/10.1186/1741-7007-10-78 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Nguyen TN, Padman BS, Usher J et al (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215(6):857–874.  https://doi.org/10.1083/jcb.201607039 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Nooraei MS, Noori-Zadeh A, Darabi S et al (2018) Low level of autophagy-related gene 10 (ATG10) expression in the 6-Hydroxydopamine rat model of Parkinson’s disease. Iran Biomed J 22(28):15–21.  https://doi.org/10.22034/ibj.22.1.15 CrossRefPubMedCentralGoogle Scholar
  125. Omata Y, Lim YM, Akao Y, Tsuda L (2014) Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am J Neurodegener Dis 3(3):134–142PubMedPubMedCentralGoogle Scholar
  126. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18(49):6853–6866.  https://doi.org/10.1038/sj.onc.1203239 CrossRefPubMedGoogle Scholar
  127. Palumbo R, Sampaolesi M, Marchis FD et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164(3):441–449.  https://doi.org/10.1083/jcb.200304135 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pascolini D, Mariotti SP, Pokharel GP et al (2004) 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol 11(2):67–115.  https://doi.org/10.1076/opep.11.2.67.28158 CrossRefPubMedGoogle Scholar
  129. Pengo N, Agrotis A, Prak K et al (2017) A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B. Nat Commun 8(1):294.  https://doi.org/10.1038/s41467-017-00303-2 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR Is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886.  https://doi.org/10.1016/j.cell.2009.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Puente C, Hendrickson RC, Jiang X (2016) Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J Biol Chem 291(11):6026–6035.  https://doi.org/10.1074/jbc.m115.689646 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Rabanal-Ruiz Y, Otten EG, Korolchuk VI (2017) mTORC1 as the main gateway to autophagy. Essays Biochem 61(6):565–584.  https://doi.org/10.1042/ebc20170027 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Ravikumar B, Moreau K, Jahreiss L et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757.  https://doi.org/10.1038/ncb2078 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Rebsamen M, Pochini L, Stasyk T et al (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519(7544):477–481.  https://doi.org/10.1038/nature14107 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017.  https://doi.org/10.1152/physrev.00038.2012 CrossRefPubMedGoogle Scholar
  136. Russell RC, Tian Y, Yuan H et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–750.  https://doi.org/10.1038/ncb2757 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sadoshima J (2008) The role of autophagy during ischemia/reperfusion. Autophagy 4:402–403.  https://doi.org/10.4161/auto.5924 CrossRefPubMedGoogle Scholar
  138. Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303.  https://doi.org/10.1016/j.cell.2010.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS et al (2010) Loss of ‘Small-World’ networks in Alzheimers disease: graph analysis of fMRI resting-state functional connectivity. PLoS One 5(11):e13788.  https://doi.org/10.1371/journal.pone.0013788 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Sattler T, Mayer A (2000) Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol 151(3):529–538.  https://doi.org/10.1083/jcb.151.3.529 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. Apr 4 Epub 2007 Mar 8. PMID:17347651 PMCID:PMC1847657 26(7):1749–1760.  https://doi.org/10.1038/sj.emboj.7601623 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 1:a006189.  https://doi.org/10.1101/cshperspect.a006189 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Sirk D, Zhu Z, Wadia JS et al (2007) Chronic exposure to sub-lethal beta-amyloid (Aβ) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells. J Neurochem 103(5):1989–2003.  https://doi.org/10.1111/j.1471-4159.2007.04907 CrossRefPubMedGoogle Scholar
  144. Sly LM, Lopez M, Nauseef WM, Reiner NE (2001) 1α,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by Phosphatidylinositol 3-Kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 276(38):35482–35493.  https://doi.org/10.1074/jbc.m102876200 CrossRefPubMedGoogle Scholar
  145. Strohecker AM, Guo JY, Karsli-Uzunbas G et al (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3(11):1272–1285.  https://doi.org/10.1158/2159-8290.cd-13-0397 CrossRefPubMedGoogle Scholar
  146. Taskintuna I, Elsayed MA, Schatz P (2016) Update on clinical trials in dry age-related macular degeneration. Middle East Afr J Ophthalmol 23(1):13–26.  https://doi.org/10.4103/0974-9233.173134 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. Acta Pathol Microbiol Immunol Scand 106(2):265–276.  https://doi.org/10.1111/j.1699-0463.1998.tb01346 CrossRefGoogle Scholar
  148. Thapalia BA, Zhou Z, Lin X (2014) Autophagy, a process within reperfusion injury: an update. Int J Clin Exp Pathol 7(12):8322–8341PubMedPubMedCentralGoogle Scholar
  149. Tooze SA, Abada A, Elazar Z (2014) Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb Perspect Biol 6(5):a018358.  https://doi.org/10.1101/cshperspect.a018358 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Travassos LH, Carneiro LAM, Ramjeet M et al (2009) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62.  https://doi.org/10.1038/ni.1823 CrossRefPubMedGoogle Scholar
  151. Tsuboyama K, Koyama-Honda I, Sakamaki Y et al (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354(6315):1036–1041.  https://doi.org/10.1126/science.aaf6136 CrossRefPubMedGoogle Scholar
  152. Valentim L, Laurence KM, Townsend PA et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40(6):846–852.  https://doi.org/10.1016/j.yjmcc.2006.03.428 CrossRefPubMedGoogle Scholar
  153. Van Dalfsen KM, Moore VDG (2013) BCL-2 protein regulation of apoptosis in diabetic cardiomyopathy. FASEB J 27(1):835–836Google Scholar
  154. Van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6(6):800–801.  https://doi.org/10.4161/auto.6.6.12575 CrossRefPubMedGoogle Scholar
  155. Van Deursen MV (2014) The role of senescent cells in ageing. Nature 509(7501):439–446.  https://doi.org/10.1038/nature13193 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Van Zutphen T, Todde V, Boer RD et al (2013) Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25(2):290–301.  https://doi.org/10.1091/mbc.e13-08-0448 CrossRefPubMedGoogle Scholar
  157. Wang J, Lian H, Zhao Y et al (2008) Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 283(37):25596–25605.  https://doi.org/10.1074/jbc.m801716200 CrossRefPubMedGoogle Scholar
  158. Wang AL, Lukas TJ, Yuan M et al (2009) Autophagy, exosomes and drusen formation in age-related macular degeneration. Autophagy 5(4):563–564.  https://doi.org/10.4161/auto.5.4.8163 CrossRefPubMedGoogle Scholar
  159. Wang S, Tsun Z-Y, Wolfson RL et al (2015a) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194.  https://doi.org/10.1126/science.1257132 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wang Z, Zhang L, Liang Y et al (2015b) Cyclic AMP mimics the anti-ageing effects of calorie restriction by up-regulating sirtuin. Sci Rep 5:12012.  https://doi.org/10.1038/srep12012 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wang H, Wang J, Qu H et al (2016) In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 54(2):348–359.  https://doi.org/10.1007/s12020-016-0999-1 CrossRefPubMedGoogle Scholar
  162. Wang A, Carraro-Lacroix LR, Owen C et al (2017) Activity-independent targeting of mTOR to lysosomes in primary osteoclasts. Sci Rep 7(1):3005.  https://doi.org/10.1038/s41598-017-03494-2 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Whitmore SS, Braun TA, Skeie JM et al (2013) Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells. Mol Vis 19:2274–2297PubMedPubMedCentralGoogle Scholar
  164. Williams SCP (2013) Alzheimers disease: mapping the brains decline. Nature 502(7473):S84–S85.  https://doi.org/10.1038/502s84a CrossRefPubMedGoogle Scholar
  165. Wu S, Sun J (2011) Vitamin D, Vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med 11(59):325–335PubMedPubMedCentralGoogle Scholar
  166. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Investig 107(2):135–142.  https://doi.org/10.1172/jci11914 CrossRefPubMedGoogle Scholar
  167. Yamaza H, Komatsu T, Wakita S et al (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9(3):372–382.  https://doi.org/10.1111/j.1474-9726.2010.00563.x CrossRefPubMedGoogle Scholar
  168. Yan L, Vatner DE, Kim S-J et al (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci 102(39):13807–13812.  https://doi.org/10.1073/pnas.0506843102 CrossRefPubMedGoogle Scholar
  169. Yang S, Wang X, Contino G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729.  https://doi.org/10.1101/gad.2016111 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yao Y, Jones E, Inoki K (2017) Lysosomal regulation of mTORC1 by amino acids in mammalian cells. Biomolecules 7(3):51.  https://doi.org/10.3390/biom7030051 CrossRefPubMedCentralGoogle Scholar
  171. Yapici NB, Bi Y, Li P et al (2015) Highly stable and sensitive fluorescent probes (LysoProbes) for lysosomal labeling and tracking. Sci Rep 5:8576.  https://doi.org/10.1038/srep08576 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Yildizgören MT, Togral AK (2014) Preliminary evidence for vitamin D deficiency in nodulocystic acne. Dermato-Endocrinology 6:e983687.  https://doi.org/10.4161/derm.29799 CrossRefPubMedGoogle Scholar
  173. Yue Z, Jin S, Yang C et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci 100(25):15077–15082.  https://doi.org/10.1073/pnas.2436255100 CrossRefPubMedGoogle Scholar
  174. Yuk J-M, Shin D-M, Lee H-M et al (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6(3):231–243.  https://doi.org/10.1016/j.chom.2009.08.004 CrossRefPubMedGoogle Scholar
  175. Zarbock A, Eroglu A, Erturk E et al (2014) Ischemia-reperfusion injury and anesthesia. Biomed Res Int 2014:1–3.  https://doi.org/10.1155/2014/980318 CrossRefGoogle Scholar
  176. Zare-Shahabadi A, Masliah E, Johnson GV, Rezaei N (2015) Autophagy in Alzheimer’s disease. Rev Neurosci 26(4):385–395.  https://doi.org/10.1515/revneuro-2014-0076 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903.  https://doi.org/10.1074/jbc.m800102200 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Zhou J, Tan S-H, Nicolas V et al (2013) Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res 23(4):508–523.  https://doi.org/10.1038/cr.2013.11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations