Decision Making in Aviation

  • José HanhamEmail author
  • Jimmie Leppink


Along with security and emergency medicine (Chaps.   4 and   5 of this book), aviation is widely acknowledged as a high-stakes setting. In this chapter, we illustrate that a number of challenging aspects of flying are related to the dealing with multiple elements of information concurrently. We discuss how expertise grounded upon flying experience is critical, but not necessarily a full-proof factor in the successful piloting of aircraft. We discuss the benefits and pitfalls associated with recent advancements in aviation technology, including cockpit design and automation. We also discuss the developmental phase in which pilots are most susceptible to decision-making errors.


  1. Australian Transport Safety Bureau. (2006). International fatality rates: A comparison of Australian Civil Aviation fatality rates with international data (Aviation Research and Analysis Report – B2006/0002). Retrieved from
  2. Australian Transport Safety Bureau. (2017). Aviation occurrence statistics 2006 to 2015. (Publication Number AR-2016-122). Retrieved from
  3. Aviation Safety Network (2017). ASN data show 2017 was safest year in aviation history. Retrieved from
  4. Barshi, I., & Loukopoulos, L. (2012). Training for real-world job performance. In A. F. Healy & L. E. Bourne Jr. (Eds.), Training cognition: Optimizing efficiency, durability, and generalizability (pp. 287–306). New York: Psychology Press.Google Scholar
  5. Burian, B. K. (2014). Factors affecting the use of emergency and abnormal checklists: Implications for current and NextGen operations. NASA Technical Memorandum, NASA/TM—2014-218382. Retrieved from Scholar
  6. Bolton, M. L., & Bass, E. J. (2012). Using model checking to explore checklist-guided pilot behaviour. The International Journal of Aviation Psychology, 22, 343–366.CrossRefGoogle Scholar
  7. Boyd, D. D. (2017). A review of general aviation safety (1984–2017). Aerospace Medicine and Human Performance, 88, 657–664 CrossRefGoogle Scholar
  8. Boyd, D. D., & Stolzer, A. (2016). Accident-precipitating factors for crashes in turbine-powered general aviation aircraft. Accident Analysis and Prevention, 86, 209–216.CrossRefGoogle Scholar
  9. Casner, S. M., Geven, R. W., Recker, M. P., & Schooler, J. W. (2014). The retention of manual flying skills in the automated cockpit. Human Factors, 56, 1506–1516. CrossRefGoogle Scholar
  10. Casner, S. M., Geven, R. W., & Williams, K. T. (2013). The effectiveness of airline pilot training for abnormal events. Human Factors, 55, 477–485. CrossRefGoogle Scholar
  11. Colvin, K., Funk, K., & Braune, R. (2005). Task prioritization factors: Two part-task simulator studies. The International Journal of Aviation Psychology, 15, 321–338. CrossRefGoogle Scholar
  12. Comisión De Investigación De Accidentes E Incidentes De Aviación Civil (2011). Report A-032/2008. Retrieved from
  13. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Science, 24, 152–153. CrossRefGoogle Scholar
  14. Craig, P. A. (2000). Pilot in command. New York: McGraw-Hill.Google Scholar
  15. Craig, P. A. (2013). The killing zone: How and why pilots die (2nd ed.). New York: McGraw-Hill Education.Google Scholar
  16. De Crespigny, R. (2012). QF32. Sydney, Australia: Pan Macmillan Australia.Google Scholar
  17. Dismukes, R. K. (2012). Prospective memory in workplace and everyday situations. Current Directions in Psychological Science, 21, 215–220. CrossRefGoogle Scholar
  18. Dismukes, R. K., & Berman, B. (2010). Checklists and monitoring in the cockpit: Why crucial defenses sometimes fail. NASA Technical Memorandum (NASA TM-2010-216396). Moffett Field: NASA Ames Research Center.Google Scholar
  19. Dismukes, R. K., Berman, B. A., & Loukopoulos, L. D. (2007). The limits of expertise: Rethinking pilot error and the causes of airline accidents. Burlington: Ashgate.Google Scholar
  20. Dismukes, R. K., Goldsmith, T. E., & Kochan, J. A. (2015). Effects of acute stress on aircrew performance: Literature review and analysis of operational aspects. NASA Technical Memorandum TM-2015-218930. Moffett Field: NASA Ames Research Center.Google Scholar
  21. Dismukes, R. K., Kochan, J. A., & Goldsmith, T. E. (2014). Stress and pilot performance: Operational considerations (Appendix C). Moffett Field: NASA Ames Research Center.Google Scholar
  22. Driskell, J., & Johnston, J. (1998). Stress exposure training. In J. Cannon-Bowers & E. Salas (Eds.), Making decisions under stress: Implications for individual and team training (pp. 191–217). Washington, DC: American Psychological Association.Google Scholar
  23. Doane, S. M., Sohn, Y. W., & Jodlowski, M. T. (2004). Pilot ability to anticipate the consequences of flight actions as a function of expertise. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46, 92–103. CrossRefGoogle Scholar
  24. Dorman, W., Craig, P. A., Gossett, S., & Beckman, W. (2006). Best evidence for the FAA Industry Training Standards (FITS) Program for piloting training in technically advanced aircraft. Collegiate Aviation Review, 26, 1–19.Google Scholar
  25. European Aviation Safety Agency. (2016). Loss of control in general aviation. Retrieved from
  26. European Aviation Safety Agency. (2017). Air safety statistics in the EU. Retrieved from
  27. Federal Aviation Administration. (2017). Fact Sheet – General Aviation Safety. Retrieved from
  28. Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143. CrossRefGoogle Scholar
  29. Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451–482. CrossRefGoogle Scholar
  30. Gigerenzer, G., Hertwig, R., & Pachur, T. (2011). Heuristics: The foundations of adaptive behavior. New York: Oxford University Press.CrossRefGoogle Scholar
  31. Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16, 511–525. CrossRefGoogle Scholar
  32. Harris, D. (2011). Human performance on the flight deck. Aldershot: Ashgate.CrossRefGoogle Scholar
  33. Haslbeck, A., & Hoermann, H.-J. (2016). Flying the needles: Flight deck automation erodes fine-motor flying skills among airline pilots. Human Factors, 58, 533–545. CrossRefGoogle Scholar
  34. International Air Transport Association. (2015). Loss of control in-flight accident analysis report: 2010–2014. Retrieved from
  35. Jensen, R. S., Guilkey, J., & Tigner, R. (1997). Understanding expert aviator judgment. In R. Flin, E. Salas, M. Strub, & L. Martin (Eds.), Decision making under stress: Emerging themes and applications (pp. 233–242). Aldershot: Ashgate.Google Scholar
  36. Lee, J. D., Wickens, C. D., Liu, Y., & Boyle, L. N. (2017). Designing for people: An introduction to human factors engineering (3rd ed.). Charleston: CreateSpace.Google Scholar
  37. Leppink, J., & Van den Heuvel, J. (2015). The evolution of cognitive load theory and its application to medical education. Perspectives on Medical Education, 4, 119–127. CrossRefGoogle Scholar
  38. Martinussen, M., & Hunter, D. R. (2010). Aviation psychology and human factors. New York: CRC Press.Google Scholar
  39. Miller, C. A., & Parasuraman, R. (2007). Designing for flexible interaction between humans and automation: Delegation interfaces for supervisory control. Human Factors, 49, 57–75. CrossRefGoogle Scholar
  40. Morrow, D., Wickens, C., Rantanen, E., Chang, D., & Marcus, J. (2008). Designing external aids that support older pilots’ communication. The International Journal of Aviation Psychology, 18, 167–182. CrossRefGoogle Scholar
  41. Mosier, K. L. (2010). The human in flight. From kinesthetic sense to cognitive sensibility. In E. Salas & D. Maurino (Eds.), Human factors in aviation (3rd ed.). San Diego: Elsevier.Google Scholar
  42. Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175–220.CrossRefGoogle Scholar
  43. O’Hare, D. (2003). Aeronautical decision making: Metaphors, models, and methods. In P. S. Tsag & M. A. Vidulich (Eds.), Principles and practice of aviation psychology (pp. 201–238). Mahwah: Erlbaum.Google Scholar
  44. O’Hare, D., Wiggins, M., Batt, R., & Morrison, D. (1994). Cognitive failure analysis for aircraft accident investigation. Ergonomics, 37, 1855–1869. CrossRefGoogle Scholar
  45. Orasanu, J. (2010). Flight crew decision-making. In B. Kanki, J. Anca, & R. Helmreich (Eds.), Crew resource management (2nd ed., pp. 147–179). San Diego: Academic Press.CrossRefGoogle Scholar
  46. Roodenrys, K., Agostinho, S., Roodenrys, K., & Chandler, P. (2012). Managing one’s own cognitive load when evidence of split attention is present. Applied Cognitive Psychology, 26, 878–886. CrossRefGoogle Scholar
  47. Schneider, W., & Chein, J. M. (2003). Controlled and automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559. CrossRefGoogle Scholar
  48. Schriver, A. T., Morrow, D. G., Wickens, C. D., & Talleur, D. A. (2008). Expertise differences in attentional strategies related to pilot decision making. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50, 864–878. CrossRefGoogle Scholar
  49. Skaugset, L. M., Farrell, S., Carney, M., Wolff, M., Santen, S. A., Perry, M., et al. (2016). Can you multitask? Evidence and limitations of task switching and multitasking in emergency medicine. Annals of Emergency Medicine, 68, 189–195. CrossRefGoogle Scholar
  50. Sobieralski, J. B. (2013). The cost of general aviation accidents in the United States. Transportation Research Part A: Policy and Practice, 47, 19–27. CrossRefGoogle Scholar
  51. Strauch, B. (1997). Automation and decision making – Lessons from the Cali accident. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 41, 195–199. CrossRefGoogle Scholar
  52. Transport Safety Board of Canada. (2001). Aviation investigation report. In-flight fire leading to collision with water: Swissair Transport Limited McDonnell Douglas MD-11 HB-IWF Peggy’s Cove, Nova Scotia 5 nm SW 2 September 1998 (Report Number A98H0003). Retrieved from
  53. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1130. CrossRefGoogle Scholar
  54. Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professions education: Design principles and strategies. Medical Education, 44, 85–93. CrossRefGoogle Scholar
  55. Walmsely, S., & Gibley, A. (2016). Cognitive biases in visual pilots’ weather-related decision making. Applied Cognitive Psychology, 30, 532–543. CrossRefGoogle Scholar
  56. Warm, J. S., Dember, W. N., & Hancock, P. A. (1996). Vigilance and workload in automated systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance (pp. 183–200). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  57. Weller, J., Boyd, M., & Cumin, D. (2014). Teams, tribes and patient safety: Overcoming barriers to effective teamwork in healthcare. BMJ Postgraduate Medical Journal, 90, 149–154. CrossRefGoogle Scholar
  58. Wickens, C. D., Clegg, B. A., Vieane, A. Z., & Sebok, A. L. (2015). Complacency and automation bias in the use of imperfect automation. Human Factors, 57, 728–739. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Western Sydney UniversityPenrithAustralia
  2. 2.Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations