Advertisement

Phytoremediation: An Alternative Tool Towards Clean and Green Environment

  • Sandhya Misra
  • Krishna G. Misra
Chapter

Abstract

Wetlands being the most productive and ecologically sensitive and adaptive ecosystems are constantly being challenged with anthropogenic pressures due to their wide variety of services they provide to mankind. The vast expansions of human population and associated activities have put a tremendous amount of pressure on these naturally occurring resources. Uncontrolled discharge of effluents in water from various sources resulted into altered nature of the associated ecosystems giving rise to several health issues and problems. Hence, realising the urgent need of protecting these ecologically fragile ecosystems several adaptive measures have been taken. In this connection, it is found that the available conventional methods are not feasible on various grounds like their cost, their by-products, time frame, etc. Therefore, the use of plants emerged as the alternative and promising tool for safe and sustainable ecosystem supporting life.

Keywords

Phytoremediation Wetlands Hyperaccumulator plants Phytostabilization Rhizodegradation Rhizofiltration Phytodegradation Phytovolatilization Xenobiotics 

Notes

Acknowledgements

Authors are grateful to the directors of respective institutes for extending the facilities and encouragement for the compilation of this paper. Google website is duly acknowledged for the pictures and other information. Misra S. acknowledge SERB- DST sponsored DST Fast Track Project YSS/2015/001193 for the necessary logistic supports available under this project.

References

  1. Abdelmalik, W. E. Y., El-Shinawy, R. M. K., Ishak, M. M., & Mahmoud, K. A. (1980). Uptake of radionuclides by some aquatic macrophytes of Ismailia Canal, Egypt. Hydrobiology, 69, 3.CrossRefGoogle Scholar
  2. Afrous, A., Manshouri, M., Liaghat, A., Pazira, E., & Sedghi, H. (2011). Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. African Journal of Agricultural Research, 6(24), 5391–5397.Google Scholar
  3. Ansede, J., Pellechia, P., & Yoch, D. (1999). Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: Evidence for dimethylselenoniopropionate formation. Environmental Science & Technology, 33, 2064–2069.  https://doi.org/10.1021/es9812296.CrossRefGoogle Scholar
  4. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate heavy elements: A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  5. Barber, J. T., Sharma, H. A., & Ensley, H. E. (1995). Detoxifi cation of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere, 31, 3567.CrossRefGoogle Scholar
  6. Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: Principles and perspectives. Contributions to Science, 2(3), 333–344.Google Scholar
  7. Best, E. P. H., Zappi, M. E., Fredrickson, H. L., Sprecher, S. L., Larson, S. L., & Ochman, M. (1997). Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa army ammunition plant. Annals of the New York Academy of Sciences, 829, 179.CrossRefGoogle Scholar
  8. Best, E. P., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999a). Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere, 38(14), 3383–3396.CrossRefGoogle Scholar
  9. Best, E. P. H., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999b). Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere, 39, 2057.CrossRefGoogle Scholar
  10. Bhadra, R., Spanggord, R. J., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environmental Science & Technology, 33, 3354.CrossRefGoogle Scholar
  11. Bhadra, R., Wayment, D. G., Williams, R. K., Barman, S. N., Stone, M. B., Hughes, J. B., & Shanks, J. V. (2001). Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere, 44, 1259.CrossRefGoogle Scholar
  12. Bolong, N., Ismail, A., Salim, M., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.  https://doi.org/10.1016/j.desal.2008.03.020.CrossRefGoogle Scholar
  13. Bolsunovski˘, A. I., Ermakov, A. I., Burger, M., Degermendzhi, A. G., & Sobolev, A. I. (2002). Accumulation of industrial radionuclides by the Yenisei River aquatic plants in the area affected by the activity of the mining and chemical plant. Radiatsionnaia Biologiia Radioecologiia, 42, 194.Google Scholar
  14. Bolsunovsky, A., Zotina, T., & Bondareva, L. (2005). Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). Journal of Environmental Radioactivity, 81, 33.CrossRefGoogle Scholar
  15. Brooks, R. R. (1998). Geobotany and hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 55–94). Wallingford: CAB International.Google Scholar
  16. Burken, J. G., & Schnoor, J. L. (1997). Uptake and metabolism of atrazine by poplar trees. Environmental Science & Technology, 31, 1399–1406.CrossRefGoogle Scholar
  17. Campos, M., Merino, I., Casado, R., Pacios, L. F., & Gómez, L. (2008). Review. Phytoremediation of organic pollutants. Spanish Journal of Agricultural Research, 6(Special issue), 38–47.CrossRefGoogle Scholar
  18. Carbonell, A. A., Aarabi, M. A., Delaune, R. D., Gambrell, R. P., & Patrick, W. H., Jr. (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189.CrossRefGoogle Scholar
  19. Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9, 685–692.CrossRefGoogle Scholar
  20. Chaney, R. L. (1988). Metal speciation and interactions among elements affect trace element transfer in agricultural and environmental food-chains. In J. R. Kramer & H. E. Allen (Eds.), Metal speciation: Theory, analysis and applications (pp. 219–260). Chelsea: Lewis Publishers.Google Scholar
  21. Chatterjee, S., Chetia, M., Singh, L., Chattopadhyay, B., Datta, S., & Mukhopadhyay, S. K. (2011). A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environmental Monitoring and Assessment, 178, 361–371.CrossRefGoogle Scholar
  22. Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.CrossRefGoogle Scholar
  23. Day, J. A., & Saunders, F. M. (2004). Glycoside formation from chlorophenols in Lemna minor. Environmental Toxicology and Chemistry, 25, 613.CrossRefGoogle Scholar
  24. Dhir, B. (2013). Phytoremediation: Role of aquatic plants in environmental clean-up. New Delhi: Springer.CrossRefGoogle Scholar
  25. Donnelly, P. K., Hedge, R. S., & Fletcher, J. S. (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere, 128, 984–988.Google Scholar
  26. Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.CrossRefGoogle Scholar
  27. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., & Ensley, B. (1997a). Removal of uranium from water using terrestrial plants. Environmental Science & Technology, 31, 3468–3474.CrossRefGoogle Scholar
  28. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., & Ensley, B. (1997b). Phytoremediation: A novel approach to an old problem. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 563–572). Amsterdam: Elsevier Science B.V.Google Scholar
  29. El-Shinawy, R. M. K., & Abdel-Malik, W. E. Y. (1980). Retention of radionuclides by some aquatic fresh water plants. Hydrobiology, 69, 125.CrossRefGoogle Scholar
  30. Ensley, H. E., Barber, J. T., Polita, M. A., & Oliver, A. I. (1994). Toxicity and metabolism of 2, 4-dichlorophenol by aquatic angiosperm Lemna gibba. Environmental Toxicology and Chemistry, 13, 325.CrossRefGoogle Scholar
  31. Erakhrumen, A. (2007). Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research Review, 2(7), 151–156.Google Scholar
  32. Fernandez, R. T., Whitwell, T., Riley, M. B., & Bernard, C. R. (1999). Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. Journal of the American Society for Horticultural Science, 124, 539.CrossRefGoogle Scholar
  33. Gao, J., Garrison, A. W., Mazur, C. S., Wolfe, N. L., & Hoehamer, C. F. (2000a). Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48(12), 6121–6127.CrossRefGoogle Scholar
  34. Gao, J., Garrison, A. W., Hoehamen, C., Mazur, C. S., & Wolfe, N. L. (2000b). Uptake and phytotransformation of organophosphorus pesticide by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48, 6114.CrossRefGoogle Scholar
  35. Garrison, A. W., Nzengung, V. A., Avants, J. K., Ellington, J. J., Jones, W. J., Rennels, D., & Wolfe, N. L. (2000). Phytodegradation of p, p′-DDT and the enantiomers of o,p′-DDT. Environmental Science & Technology, 34, 1663.CrossRefGoogle Scholar
  36. Gilbert, E. S., & Crowley, D. E. (1997). Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Applied and Environmental Microbiology, 63, 1933–1938.Google Scholar
  37. Gobas, E. A. P. C., McNeil, E. J., Lovett-Doust, L., & Haffner, G. D. (1991). Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environmental Science & Technology, 25, 924.CrossRefGoogle Scholar
  38. Hafez, N., Abdalla, S., & Ramadan, Y. (1998). Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bulletin of Environmental Contamination and Toxicology, 60, 944–948.  https://doi.org/10.1007/s001289900719.CrossRefGoogle Scholar
  39. Hattink, J., & Wolterbeek, H. T. (2001). Accumulation of 99 Tc in duckweed Lemna minor L. as a function of growth rate and 99 Tc concentration. Journal of Environmental Radioactivity, 57, 117–138.CrossRefGoogle Scholar
  40. Hattink, J., De Goeij, J. J. M., & Wolterbeek, H. T. (2000). Uptake kinetics of 99 Tc in common duckweed. Environmental and Experimental Botany, 44, 9–13.CrossRefGoogle Scholar
  41. Henry, J. R. (2000). An overview of phytoremediation of lead and mercury. NNEMS Report, Washington D.C, pp. 3–9. http://www.bvsde.paho.org/bvsarp/i/fulltext/over/over.pdf
  42. Hughes, J. B., Shanks, J. E., Vanderford, M. Y., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.CrossRefGoogle Scholar
  43. Kara, Y. (2010). Bioaccumulation of nickel by aquatic macrophytes. Desalination and Water Treatment, 19, 325–328.CrossRefGoogle Scholar
  44. Knuteson, S. L., Whitwell, T., & Klaine, S. J. (2002). Influence of plant age and size on simazine uptake and toxicity. Journal of Environmental Quality, 31, 2090.CrossRefGoogle Scholar
  45. Kolpin, D., Furlong, E., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  46. Kondo, K., Kawabata, H., Ueda, S., Hasegawa, H., Inaba, J., Mitamura, O., Seike, Y., & Ohmomo, Y. (2003). Distribution of aquatic plants and absorption of radionuclides by plants through the leaf surface in brackish Lake Obuchi, Japan, bordered by nuclear fuel cycle facilities. Journal of Radioanalytical and Nuclear Chemistry, 257, 305.CrossRefGoogle Scholar
  47. Kumar, M. D., Panda, R., Niranjan, V., & Bassi, N. (2013). Technology choices and institutions for improving economic and livelihood benefits from multiple uses tanks in western Orissa. In M. D. Kumar, M. V. K. Sivamohan, & N. Bassi (Eds.), Water management, food security and sustainable agriculture in developing economies. Oxford: Routledge.Google Scholar
  48. Larsen, J. C. (2006). Risk assessments of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in food. Molecular Nutrition & Food Research, 50, 885–896.CrossRefGoogle Scholar
  49. Lesage, E., Mundia, C., Rousseau, D. P. L., Van de Moortel, A. M. K., Laing, G. D., Tack, F. M. G., De Pauw, N., & Verloo, M. G. (2008). Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. In J. Vyamazal (Ed.), Wastewater treatment, plant dynamics and management in constructed and natural wetlands (pp. 211–221). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Lin, A. Y., Yu, T., & Lin, C. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 74, 131–141.CrossRefGoogle Scholar
  51. Machate, T., Noll, H., Behrens, H., & Kettrup, A. (1997). Degradation of phenanthracene and hydraulic characteristics in constructed wetland. Water Research, 31, 554.CrossRefGoogle Scholar
  52. Manahan, S. (1994). Environmental chemistry (6th ed.p. 811). New York: Lewis Publishers.Google Scholar
  53. Mander, Ü., & Mitsch, W. (2009). Pollution control by wetlands. Ecological Engineering, 35, 153–158.  https://doi.org/10.1016/j.ecoleng.2008.10.005.CrossRefGoogle Scholar
  54. Manios, T., Stentiford, E. I., & Millner, P. (2003). Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere, 53, 487–494.CrossRefGoogle Scholar
  55. Mazumdar, K., & Das, S. (2014). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in north East India. Environmental Science and Pollution Research, 22, 701–710.  https://doi.org/10.1007/s11356-014-3377-7.CrossRefGoogle Scholar
  56. Molisani, M. M., Rocha, R., Machado, W., Barreto, R. C., & Lacerda, I. D. (2006). Mercury contents in aquatic macrophytes from two reservoirs in the para’ıba do sul: Guandu river system, Se, Brazil. Brazilian Journal of Biology, 66, 101.CrossRefGoogle Scholar
  57. Nguyen, T. T. T., Davy, F. B., Rimmer, M., & De Silva, S. (2009). Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/ NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, 31 March–02 April 2009, Chonburi, Thailand.CrossRefGoogle Scholar
  58. Nwoko, C. O. (2010). Trends in phytoremediation of toxic elemental and organic pollutants. African Journal of Biotechnology, 9(37), 6010–6016.Google Scholar
  59. Nzengung, V. A., Lee, N. W., Rennels, D. E., McCutcheon, S. C., & Wang, C. (1999). Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. International Journal of Phytoremediation, 1, 203.CrossRefGoogle Scholar
  60. Osmolovskaya, N., & Kurilenko, V. (2005). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Geophysical Research Abstracts, 7, 10510.Google Scholar
  61. Panich-Pat, T., Srinives, P., Kruatrachue, M., Pokethitiyook, P., Upathamd, S., & Lanzae, G. R. (2005). Electron microscopic studies on localization of lead in organs of Typha angustifolia grown on contaminated soil. Science Asia, 31, 49–53.CrossRefGoogle Scholar
  62. Pavlostathis, S. G., Comstock, K. K., Jacobson, M. E., & Saunders, F. M. (1998). Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum aquaticum. Environmental Toxicology and Chemistry, 17, 2266.CrossRefGoogle Scholar
  63. Petrović, M., Gonzalez, S., & Barceló, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685–696.CrossRefGoogle Scholar
  64. Pilon-Smits, E., & Freeman, J. (2006). Environmental cleanup using plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4, 203–210.  https://doi.org/10.1890/1540-9295(2006)004[0203:ecupba]2.0.co;2.CrossRefGoogle Scholar
  65. Popa, K., Cecal, A., Humelnicu, D., Caraus, I., & Draghici, C. L. (2004). Removal of 60 Co2+ and 137 Cs+ ions from low radioactive solutions using Azolla caroliniana wild. Water fern. Central European Journal of Chemistry, 2, 434.Google Scholar
  66. Popa, K., Palamaru, M. N., Iordan, A. R., Humelnicu, D., Drochioiu, G., & Cecal, A. (2006). Laboratory analyses of 60Co2+, 65Zn2+ and (55+59)Fe3+ radioactions uptake by Lemna minor. Isotopes in Environmental and Health Studies, 42, 87.CrossRefGoogle Scholar
  67. Prasad, M. N. V. (2004). Phytoremediation of metals in the environment for sustainable development. Proceedings of the Indian National Science Academy, 70, 71–98.Google Scholar
  68. Qian, J. H., Zayed, A., Zhu, M. L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants, III: Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28, 1448.CrossRefGoogle Scholar
  69. Rai, P. (2008). Technical note: Phytoremediation of hg and cd from industrial effluents using an aquatic free floating Macrophyte Azolla Pinnata. International Journal of Phytoremediation, 10, 430–439.  https://doi.org/10.1080/15226510802100606.CrossRefGoogle Scholar
  70. Rai, U. N., Tripathi, R. D., Vajpayee, P., Pandey, N., Ali, M. B., & Gupta, D. K. (2003). Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus (Potamogetonaceae). Bulletin of Environmental Contamination and Toxicology, 70, 566.CrossRefGoogle Scholar
  71. Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environmental Pollution Series A, 31, 277–287.CrossRefGoogle Scholar
  72. Rice, P. J., Anderson, T. A., & Coats, J. R. (1997). Phytoremediation of herbicide-contaminated surface water with aquatic plants. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants. Washington, DC: American Chemical Society.Google Scholar
  73. Rivera, R., Medina, V. F., Larson, S. L., & McCutcheon, S. C. (1998). Phytotreatment of TNT-contaminated groundwater. Journal of Soil Contamination, 7, 511.CrossRefGoogle Scholar
  74. Roy, S., & Hanninen, O. (1994). Pentachlorophenol: Uptake/ elimination, kinetics and metabolism in an aquatic plant, Eichhornia crassipes. Environmental Toxicology and Chemistry, 13, 763.CrossRefGoogle Scholar
  75. Russi, D., ten Brink, P., Farmer, A., Badura, T., Coates, D., Förster, J., Kumar, R., & Davidson, N. (2013). The economics of ecosystems and biodiversity for water and wetlands. London, Brussels/Gland: IEEP/Ramsar Secretariat.Google Scholar
  76. Sadowsky, M. J. (1999). Phytoremediation: past promises and future practices. In Proceedings of the 8th international symposium on microbial ecology, Halifax, pp. 1–7.Google Scholar
  77. Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–475.Google Scholar
  78. Saygideger, S., Dogan, M., & Keser, G. (2004). Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. International Journal of Agriculture and Biology, 6, 168–172.Google Scholar
  79. Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Journal of Environmental Science and Technology, 29, 318A–323A.CrossRefGoogle Scholar
  80. Sharma, H. A., Barber, J. T., Ensley, H. E., & Polito, M. A. (1997). Chlorinated phenols and phenols by Lemna gibba. Environmental Toxicology and Chemistry, 16, 346.CrossRefGoogle Scholar
  81. Shokod’Ko, T. I., Drobot, P. I., Kuzmenko, M. I., & Shklyar, A. Y. (1992). Peculiarities of radionuclides accumulation by higher aquatic plants. Hydrobiological Journal, 28, 92.Google Scholar
  82. Singh, N. K., Pandey, G. C., Rai, U. N., Tripathi, R. D., Singh, H. B., & Gupta, D. K. (2005). Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bulletin of Environmental Contamination and Toxicology, 74, 857.CrossRefGoogle Scholar
  83. Singh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation of lead from wastewater using aquatic plants. International Journal of Biomedical Research.  https://doi.org/10.7439/ijbr.v2i7.124.
  84. Sivaci, E. K., Sivaci, A., & Sokman, M. (2004). Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043.CrossRefGoogle Scholar
  85. Srivastava, S., Mishra, S., Dwivedi, S., & Tripathi, R. (2010). Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata(L.f.) Royle. Water, Air, and Soil Pollution, 212, 155–165.CrossRefGoogle Scholar
  86. Srivastava, S., Srivastava, M., Suprasanna, S., & D’Souza, F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.CrossRefGoogle Scholar
  87. Stuart, M. E., Manamsa, K., Talbot, J. C., & Crane, E. J. (2011). Emerging contaminants in g groundwater. Groundwater science programme open report OR/11/013. British Geological Survey.Google Scholar
  88. Thompson, P. L., Ramer, L. A., & Schnoor, J. L. (1998). Uptake and transformation of TNT by hybrid poplar trees. Environmental Science & Technology, 32, 975–980.CrossRefGoogle Scholar
  89. Tripathi, R. D., Rai, U. N., Vajpayee, M. B., Ali, M. B., Khan, E., Gupta, D. K., Mishra, S., Shukla, M. K., & Singh, S. N. (2003). Biochemical responses of Potamogeton pectinatus L. exposed to higher concentration of zinc. Bulletin of Environmental Contamination and Toxicology, 71, 255.CrossRefGoogle Scholar
  90. Tront, A. M., & Saunders, F. M. (2006). Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere, 64(3), 400–407.CrossRefGoogle Scholar
  91. Tront, J. M., Day, J. A., & Saunders, M. F. (2001). Trichlorophenol removal with Lemna minor. In: Proceedings of the water environment federation (Vol. 40, p. 929). San Diego: WEFTEC.CrossRefGoogle Scholar
  92. Tront, J. M., Reinhold, D. M., Bragg, A. W., & Saunders, F. M. (2007). Uptake of halogenated phenols by aquatic plants. Journal of Environmental Engineering, 133, 955.CrossRefGoogle Scholar
  93. Vangronsveld, J., Herzig, R., Weyens, N., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.  https://doi.org/10.1007/s11356-009-0213-6.CrossRefGoogle Scholar
  94. Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water Milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.CrossRefGoogle Scholar
  95. Wani, S. H., Sanghera, G. S., Athokpam, H., Nongmaithem, J., Nongthongbam, R., Naorem, B. S., & Athokpam, H. S. (2012). Phytoremediation: Curing soil problems with crops. African Journal of Agricultural Research, 7(28), 3991–4002.Google Scholar
  96. Weltje, L., Brouwer, A. H., Verburg, T. G., Wolterbeek, H. T., & de Goeij, J. J. M. (2002). Accumulation and elimination of lanthanum by duckweed (Lemna minor L.) as influenced by organism growth and lanthanum sorption to glass. Environmental Toxicology and Chemistry, 21, 1483–1489.CrossRefGoogle Scholar
  97. Windham, L., Weis, J. S., & Weis, P. (2001). Lead uptake, distribution and effects in two dominant salt marsh macrophytes Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Marine Pollution Bulletin, 42, 811.CrossRefGoogle Scholar
  98. Windham, L., Weis, J. S., & Weis, P. (2003). Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56, 63.CrossRefGoogle Scholar
  99. Wolf, S. D., Lassiter, R. R., & Wooten, S. E. (1991). Predicting chemical accumulation in shoots of aquatic plants. Environmental Toxicology and Chemistry, 10, 655.CrossRefGoogle Scholar
  100. Xia, J., Wu, L., & Tao, Q. (2002a). Phytoremediation of methyl parathion by water hyacinth(Eichhornia crassipes Solm.). Chemical Abstracts, 137, 155879.Google Scholar
  101. Xia, J., Wu, L., & Tao, Q. (2002b). Phytoremediation of some pesticides by water hyacinth (Eichhornia crassipes Solm.). Chemical Abstracts, 138, 390447.Google Scholar
  102. Xue, P., Yan, C., Sun, G., & Luo, Z. (2012). Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environmental Science and Pollution Research International, 19, 3969–3976.CrossRefGoogle Scholar
  103. Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. The New Phytologist, 136, 469.CrossRefGoogle Scholar
  104. Zayed, A., Pilon-Smits, E., de Souza, M., Lin, Z. Q., & Terry, N. (2000). Remediation of selenium polluted soils and waters by phytovolatilization. In N. Terry & G. Barnuelos (Eds.), Phytoremediation of contaminated soil and water (p. 61). Boca Raton: Lewis.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandhya Misra
    • 1
    • 2
  • Krishna G. Misra
    • 2
  1. 1.Indian Institute of Technology GandhinagarPalajIndia
  2. 2.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations