Harnessing Microbial Potential for Wastewater Treatment in Constructed Wetlands

  • Manoj Kaushal
  • Suhas P. Wani
  • Mukund D. Patil


Microbial community constitute a major component of constructed wetlands (CWs), playing a major role in these systems capacities for treating wastewater. Constructed wetland system has a hydraulic regime, although the volume of inflow in the wetland is never the same as the outflow. Wetland are either of Free Water Surface (FWS) or Subsurface Flow (SF). Nitrogen, the most important component in constructed wetlands undergoes transformation by various processes converting N into one to another form and by plant uptake. For instance, nitrification is more impactful for ammonia reduction and its removal relies on the configuration of the wetland and the dissolved oxygen (DO). The chapter discusses the types of wetlands and their physical, chemical and biological processes in the removal of various contaminants. It also gives an overview of different microbial processes and their mechanisms involved during the treatment of wastewater inside constructed wetland systems.


Waste water treatment Constructed wetlands Biological transformation Nutrient removal 


  1. Bodtker, G., Thorstenson, T., Lillebo, B. L. P., Thorbjornsen, B. E., Ulvoen, R. H., et al. (2008). The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. Journal of Industrial Microbiology & Biotechnology, 35, 1625–1636.CrossRefGoogle Scholar
  2. Button, M., Weber, K. P., Nivala, J., Aubron, T., & Muller, R. A. (2015). Community-level physiological profiling of constructed wetland microbial communities: Effects of sample preparation. Applied Biochemistry and Biotechnology, 178, 960–973.CrossRefGoogle Scholar
  3. Button, M., Auvinen, H., Van Koetsem, F., Hosseinkhani, B., Rousseau, D., Weber, K. P., & Du Laing, G. (2016). Susceptibility of constructed wetland microbial communities to silver nanoparticles: A microcosm study. Ecological Engineering, 97, 476–485.CrossRefGoogle Scholar
  4. Calheiros, C. S. C., Duque, A. F., Moura, A., Henriques, I. S., Correia, A., et al. (2009). Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecological Engineering, 35, 744–753.CrossRefGoogle Scholar
  5. Characklis, G. W., Dilts, M. J., Simmons, O. D., Likirdopulos, C. A., Krometis, L.-A. H., & Sobsey, M. D. (2005). Microbial partitioning to settleable particles in stormwater. Water Research, 39, 1773–1782.CrossRefGoogle Scholar
  6. Chouinard, A., Balch, G. C., Jorgensen, S. E., Yates, C. N., & Wootton, B. C. (2014). Tundra wetlands: The treatment of municipal wastewaters. RBC blue water project: performance & operational tools. CWAT, Fleming College pp. 380.Google Scholar
  7. Dong, X., & Reddy, G. B. (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175–1182.CrossRefGoogle Scholar
  8. Dong, Z., & Sun, T. (2007). A potential new process for improving nitrogen removal in constructed wetlands-promoting coexistence of partial-nitrification and ANAMMOX. Ecological Engineering, 31, 69–78.CrossRefGoogle Scholar
  9. Forbes, D. A., Reddy, G. B., Hunt, P. G., Poach, M. E., Ro, K. S., et al. (2010). Comparison of aerated marsh-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater. Journal of Environmental Science and Health, 45, 803–809.CrossRefGoogle Scholar
  10. Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. (2004). Chronic nitrogen enrichment affects thee structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159–171.CrossRefGoogle Scholar
  11. Gray, N. F. (2004). Biology of wastewater treatment, Series in Environmental Science and Management. London: Imperial College Press.CrossRefGoogle Scholar
  12. Gustavsson, L., & Engwall, M. (2012). Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms- water, BOD, carbon and nutrient removal. Waste Management, 32, 104–109.CrossRefGoogle Scholar
  13. Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1, 176–180.Google Scholar
  14. Herbst, F. A., Lunsmann, V., Kjeldal, H., Jehmlich, N., Tholey, A., von Bergen, M., Nielsen, J. L., Hettich, R. L., Seifert, J., & Nielsen, P. H. (2016). Enhancing metaproteomics-the value of models and defined environmental microbial systems. Proteomics, 16, 783–798.CrossRefGoogle Scholar
  15. Hilton, B. L. (1993). Performance evaluation of a closed ecological life support system (CELSS) employing constructed wetlands. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 117–125). Boca Raton: CRC Press.Google Scholar
  16. Hirayama, H., Takai, K., Inagaki, F., Yamato, Y., Suzuki, M., et al. (2005). Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles, 9, 169–184.CrossRefGoogle Scholar
  17. Hoffland, E., Van Den Boogaard, R., Nelemans, J., & Findenegg, G. (1992). Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. The New Phytologist, 122, 675–680.CrossRefGoogle Scholar
  18. Ibekwe, A. M., Grieve, C. M., & Lyon, S. R. (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied and Environmental Microbiology, 69, 5060–5069.CrossRefGoogle Scholar
  19. Ibekwe, A. M., Ma, J., Murinda, S., & Reddy, G. B. (2017). Microbial diversity in continuous flow constructed a wetland for the treatment of swine waste. Hydrology Current Research, 8, 277.Google Scholar
  20. Ipsilantis, I., & Sylvia, D. M. (2007). Abundance of fungi and bacteria in a nutrient impacted Florida wetland. Applied Soil Ecology, 35, 272–280.CrossRefGoogle Scholar
  21. Johnston, C. A. (1991). Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Critical Reviews in Environmental Control, 21(5), 491–565.CrossRefGoogle Scholar
  22. Kaushal, M., Wani, S. P., Patil, M. D., & Datta, A. (2016). Monitoring efficacy of constructed wetland for treating domestic effluent-microbiological approach. Current Science, 110, 1710–1715.CrossRefGoogle Scholar
  23. Kaushal, M., Patil, M. D., & Wani, S. P. (2017). Potency of constructed wetlands for deportation of pathogens index from rural, urban and industrial wastewater. International Journal of Environmental Science and Technology, 15, 637–648. Scholar
  24. Kroger, R., Pierce, S. C., Littlejohn, K. A., Moore, M. T., & Farris, J. L. (2012). Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach. Agricultural Water Management, 103, 162–166.CrossRefGoogle Scholar
  25. Kuenen, J. G. (2008). Anammox bacteria: From discovery to application. Nature Reviews. Microbiology, 6(4), 320–326.CrossRefGoogle Scholar
  26. Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407–2415.CrossRefGoogle Scholar
  27. Long, Y., Yi, H., Chen, S., Zhang, Z., Cui, K., et al. (2016). Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water. Environmental Science and Pollution Research, 23, 19570–19579.CrossRefGoogle Scholar
  28. Miersch, J., Tschimedbalshir, M., Barlocher, F., Grams, Y., Pierau, B., Schierhorn, A., & Kraus, G. J. (2001). Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycological Research, 105, 883–889.CrossRefGoogle Scholar
  29. Mitchell, C. (1996). Pollutant removal mechanisms in artificial wetlands: Course notes for the IWES 96. Gold Coast: International Winter Environmental School.Google Scholar
  30. Mitsch, W. J., & Gosselink, J. G. (1986). Wetlands. New York: Van Nostrand Reinhold.Google Scholar
  31. Mitsch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed.). Hoboken: Wiley p 582.Google Scholar
  32. Nelson, C. E. (2009). Phenology of high-elevation pelagic bacteria: The roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. The ISME Journal, 3, 13–30.CrossRefGoogle Scholar
  33. Nolvak, H., Truu, M., Tiirik, K., Oopkaup, K., Sildvee, T., Kaasik, A., Mander, U., & Truu, J. (2013). Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Science of the Total Environment, 1, 636–644.CrossRefGoogle Scholar
  34. Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., & Oberson, A. (2004). Basal organic phosphorus mineralization in soils under different farming systems. Soil Biology and Biochemistry, 36, 667–675.CrossRefGoogle Scholar
  35. Oopkaup, K., Truu, M., Nõlvak, H., Ligi, T., & Preem, J. K. (2016). Dynamics of bacterial community abundance and structure in horizontal subsurface flow wetland mesocosms treating municipal wastewater. Water, 8, 457.CrossRefGoogle Scholar
  36. Reddy, K. R., & Graetz, D. A. (1988). Carbon and nitrogen dynamics in wetland soils. In D. D. Hook (Ed.), Ecology and management of wetlands. Ecology of Wetlands Portland (pp. 307–318). Portland: Timber Press.Google Scholar
  37. Reddy, G. B., Hunt, P. G., Phillips, R., Stone, K., & Grubbs, A. (2001). Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water Science and Technology, 44, 545–550.CrossRefGoogle Scholar
  38. Richardson, C. J. (1985). Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science, 228, 1424–1427.CrossRefGoogle Scholar
  39. Scholz, M., & Lee, B. H. (2005). Constructed wetlands: A review. International Journal of Environmental Studies, 62, 1256–1261.Google Scholar
  40. Sundberg, C., Tonderski, K., & Lindgren, P. E. (2007). Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates. Water Science and Technology, 56, 159–166.CrossRefGoogle Scholar
  41. Symonds, E. M., Verbyla, M. E., Lukasik, J. O., Kafle, R. C., Breitbart, M., & Mihelcic, J. R. (2014). A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water Research, 65, 257–270.CrossRefGoogle Scholar
  42. Truu, J., Nurk, K., Juhanson, J., & Mander, U. (2005). Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40, 1191–1200.CrossRefGoogle Scholar
  43. US EPA. (2000). Constructed wetlands treatment of municipal wastewaters (1st ed.). Cincinnati: United States Environmental Protection Agency.Google Scholar
  44. Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(1), 478–490.CrossRefGoogle Scholar
  45. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65.CrossRefGoogle Scholar
  46. Walbridge, M. R., & Struthers, J. P. (1993). Phosphorus retention in non-tidal palustrine forested wetlands of the Mid-Atlantic region. Wetlands, 13(2), 84–94.CrossRefGoogle Scholar
  47. Wang, Y., Hayatsu, M., & Fujii, T. (2012). Extraction of bacterial RNA from soil: Challenges and solutions. Microbes and Environments, 27, 111–121.CrossRefGoogle Scholar
  48. Wassel, R. A., & Mills, A. L. (1983). Changes in water and sediment bacterial community structure in a lake receiving acid-mine drainage. Microbial Ecology, 9, 155–169.CrossRefGoogle Scholar
  49. Weber, K. P., Mitzel, M. R., Slawson, R. M., & Legge, R. L. (2011). Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Research, 45, 3185–3196.CrossRefGoogle Scholar
  50. Wetzel, R. G. (1993). Constructed wetlands: Scientific foundations are critical. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 3–7). Boca Raton: CRC Press.Google Scholar
  51. Wu, S., Carvalho, P. N., Muller, J. A., Manoj, V. R., & Dong, R. (2016). Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541, 8–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manoj Kaushal
    • 1
  • Suhas P. Wani
    • 2
  • Mukund D. Patil
    • 2
  1. 1.International Institute of Tropical AgricultureIbadanNigeria
  2. 2.Research Program – Asia, International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia

Personalised recommendations