Microbial Biofortification: A Green Technology Through Plant Growth Promoting Microorganisms

  • Amir Khan
  • Jyoti Singh
  • Viabhav Kumar Upadhayay
  • Ajay Veer Singh
  • Shachi Shah


The hidden hunger or malnutrition is considered to be the most dignified global challenge to human kind. Malnutrition afflicts approximately more than one billion of world’s population in both developed and developing countries. Malnutrition includes diet related chronic diseases as well as overt nutrient deficiencies which leads to morbidity, reduced physical and mental growth. However, strategies to enhance supplementation of mineral elements and food fortification have not always been successful. Plant growth promoting microorganisms are known to fortify micro- and macro-nutrient contents in staple food crops through various mechanisms such as siderophore production, zinc solubilization, nitrogen fixation, phosphate solubilization, etc. Inoculation of potential microorganisms along with mineral fertilizers can increase the uptake of mineral elements, yield and growth. Therefore, biofortification of staple food crops by the implications of plant growth promoting microorganisms has an ability to attain mineral elements, is advocated as novel strategy not only to increase concentration of micronutrient in edible food crops but also to improve yields on less fertile soils.


Microbial biofortification Plant growth promoting microorganisms Malnutrition Zinc Micronutrient 


  1. Alemu, F. (2013). Isolation of Pseudomonas fluorescens from rhizospheric soil of faba bean and assessment of their phosphate solubility: In vitro study, Ethiopia. Scholars Academic Journal of Biosciences, 1(7), 346–351.Google Scholar
  2. Bagali, S. S. (2012). Review: Nitrogen fixing microorganisms. International Journal of Microbiology, 3(1), 46–52.Google Scholar
  3. Beattie, G. A. (2006). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 1–56). Dordrecht: Springer.Google Scholar
  4. Black, R. E. (2014). Global distribution and disease burden related to micronutrient deficiencies. Nestle Nutrition Institute Workshop Series, 78, 21–28.CrossRefGoogle Scholar
  5. Bonfante, P., & Genre, A. (2015). Arbuscular mycorrhizal dialogues: Do you speak ‘plantish’ or ‘fungish’? Trends in Plant Science, 20, 150–154.CrossRefGoogle Scholar
  6. Burkert, B., & Robson, A. (1994). Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry, 26, 1117–1124.CrossRefGoogle Scholar
  7. Das, A., Prasad, R., Srivastava, A., Giang, P. H., Bhatnagar, K., & Varma, A. (2007). Fungal siderophores: Structure, functions and regulations. In A. Varma & S. B. Chincholkar (Eds.), Microbial siderophores (pp. 1–42). Berlin/Heidelberg: Springer.Google Scholar
  8. Durán, P., Acuña, J. J., Armada, E., López-Castillo, O. M., Cornejo, P., Mora, M. L., & Azcón, R. (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 16(1), 211–225.Google Scholar
  9. Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1–6.CrossRefGoogle Scholar
  10. Gadd, G. M. (2010). Metals, minerals and microbes: Geo-microbiology and bioremediation. Microbiology, 156(Pt 3), 609–643.CrossRefGoogle Scholar
  11. Gupta, R. K., Kaushik, S., Sharma, P., & Jain, V. K. (2003). Biofertilizers: An ecofriendly alternative to chemical fertilizers. In A. Kumar (Ed.), Environmental challenge of 21th century (pp. 275–287). New Delhi: APH Publication Corporation.Google Scholar
  12. Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences, 39(3), 112–120.CrossRefGoogle Scholar
  13. Hirpara, D. G., Gajera, H. P., Hirpara, H. Z., & Golakiya, B. A. (2017). Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. Journal of Molecular Microbiology and Biotechnology, 27, 22–28.CrossRefGoogle Scholar
  14. Hirschi, K. D. (2009). Nutrient biofortification of food crops. Annual Review of Nutrition, 29, 401–421.CrossRefGoogle Scholar
  15. Jones, M. D., Durall, D. M., & Tinker, P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: Growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist, 140(1), 125–134.CrossRefGoogle Scholar
  16. Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7, 1809–1817.CrossRefGoogle Scholar
  17. Kang, S. M., Radhakrishnan, R., You, Y. H., Joo, G. J., Lee, I. J., Lee, K. E., & Kim, J. H. (2014). Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian Journal of Microbiology, 54(4), 427–433.CrossRefGoogle Scholar
  18. Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.CrossRefGoogle Scholar
  19. Kumar, A., & Bohra, C. (2006). Green technology in relation to sustainable agriculture. In Green technologies for sustainable agriculture. New Delhi: Daya Publishing House.Google Scholar
  20. Lal, R., & Greenland, D. J. (1979). Soil physical properties and crop production. Chichester: Wiley.Google Scholar
  21. Leong, S. A., & Neilands, J. B. (1982). Siderophore production by phytopathogenic microbial species. Archives of Biochemistry and Biophysics, 281, 351–359.CrossRefGoogle Scholar
  22. Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47, 333–345.CrossRefGoogle Scholar
  23. Malhi, S. S., Vera, C. L., & Brandt, S. A. (2013). Relative effectiveness of organic and inorganic nutrient sources in improving yield, seed quality and nutrient uptake of canola. Agricultural Sciences, 4(12), 1–18.CrossRefGoogle Scholar
  24. Murray-Kolb, L. E. (2013). Iron and brain functions. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 703–707.CrossRefGoogle Scholar
  25. Newell, M. M. (2008). Nutritionally improved agricultural crops. Plant Physiology, 147, 939–953.CrossRefGoogle Scholar
  26. Prasad, R., Shivay, Y. S., & Kumar, D. (2014). Agronomic biofortification in cereal of cereal grains with iron and zinc. Advances in Agronomy, 125, 55–91.CrossRefGoogle Scholar
  27. Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. In D. Egamberdieva, S. Shrivastava, & A. Varma (Eds.), Plant growth-promoting rhizobacteria (PGPR) and medicinal plants (pp. 247–260). Cham: Springer.Google Scholar
  28. Puyam, A. (2016). Advent of Trichoderma as a bio-control agent – A review. Journal of Applied and Natural Sciences, 8(2), 1100–1109.CrossRefGoogle Scholar
  29. Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. The European Journal of Soil Biology, 50, 118–126.CrossRefGoogle Scholar
  30. Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60, 27–40.CrossRefGoogle Scholar
  31. Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020.CrossRefGoogle Scholar
  32. Salgueiro, M. J., Zubillaga, M., Lysionek, A., Cremaschi, G., Goldman, C. G., Caro, R., De Paoli, T., Hager, A., Weill, R., & Boccio, J. (2000). Zinc status and immune system relationship: A review. Biological Trace Element Research, 76(3), 193–205.CrossRefGoogle Scholar
  33. Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2004). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 35(1–2), 121–125.CrossRefGoogle Scholar
  34. Shaikh, S. S., & Sayyed, R. Z. (2015). Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In Plant microbes symbiosis: Applied facets (pp. 337–351). New Delhi: Springer.Google Scholar
  35. Sharma, P., Aggarwal, P., & Kaur, A. (2016). Biofortification: A new approach to eradicate hidden hunger. Food Reviews International, 33(1), 1–21.CrossRefGoogle Scholar
  36. Shuman, L. M. (1998). Micronutrient fertilizers. Journal of Crop Production, 1, 165–195.CrossRefGoogle Scholar
  37. Singh, A. V., & Prasad, B. (2014). Enhancement of plant growth, nodulation and seed yield through plant growth promoting rhizobacteria in lentil (Lens culinaris Medik cv. VL125). International Journal of Current Microbiology and Applied Sciences, 3(6), 614–622.Google Scholar
  38. Singh, J., & Singh, A. V. (2017). Microbial strategies for enhanced phytoremediation of heavy metals contaminated soils. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (Vol. 9, pp. 249–264). Boca Raton: Taylor & Francis.Google Scholar
  39. Singh, A. V., Shah, S., & Prasad, B. (2010). Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr). Journal of Hill Agriculture, 1(1), 35–39.Google Scholar
  40. Singh, A. V., Chandra, R., & Reeta, G. (2013). Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Archives of Agronomy and Soil Science, 59(5), 641–651.CrossRefGoogle Scholar
  41. Singh, J., Singh, A. V., Prasad, & Shah, S. (2017). Sustainable agriculture strategies of wheat biofortification through microorganisms. In A. Kumar, A. Kumar, & B. Prasad (Eds.), Wheat a premier food crop. New Delhi: Kalyani Publishers.Google Scholar
  42. Singh, A. V., Prasad, B., & Goel, R. (2018). Plant growth promoting efficiency of phosphate solubilizing Chryseobacterium sp. PSR 10 with different doses of N and P fertilizers on Lentil (Lens culinaris var. PL-5) growth and yield. International Journal of Current Microbiology and Applied Sciences, 7(05), 2280–2289.CrossRefGoogle Scholar
  43. Srivastava, M. P., Tewari, R., & Sharma, N. (2013). Effect of different cultural variables on siderophores produced by Trichoderma spp. International Journal of Advanced Research, 1, 1–6.Google Scholar
  44. Subramanian, K. S., Tenshia, V., Jayalakshmi, K., & Ramachandran, V. (2009). Role of arbuscular mycorrhizal fungus (Glomus intraradices)–(fungus aided) in zinc nutrition of maize. Journal of Agricultural Biotechnology and Sustainable Development, 1, 29–38.Google Scholar
  45. United Nations System Standing Committee on Nutrition (UNSSCN). (2004). 5th report on the world nutrition situation nutrition for improved development outcomes. Geneva: SCN.Google Scholar
  46. Vaishampayan, A., Sinha, R. P., Hader, D. P., Dey, T., Gupta, A. K., Bhan, U., & Rao, A. L. (2001). Cyanobacterial biofertilizers in rice agriculture. The Botanical Review, 67(4), 453–516.CrossRefGoogle Scholar
  47. Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.CrossRefGoogle Scholar
  48. Wandersman, C., & Delepelaire, P. (2004). Bacterial iron sources: From siderophores to hemophores. Annual Review of Microbiology, 58, 611–647.CrossRefGoogle Scholar
  49. Whiting, S. N., de Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 35, 3144–3150.CrossRefGoogle Scholar
  50. Woo, S. L., Donzelli, B., Scala, F., Mach, R. L., Harman, G. E., Kubicek, C. P., Del Sorbo, G., & Lorito, M. (1999). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Molecular Plant-Microbe Interactions, 12, 419–429.CrossRefGoogle Scholar
  51. Yadav, R., Singh, A. V., Kumar, M., & Yadav, S. (2016). Phytochemical analysis andplant growth promoting properties of endophytic fungi isolated from tulsi and Aloe vera. International Journal of Agricultural and Statistics Sciences, 12(1), 239–248.Google Scholar
  52. Yao, A. V., Bochow, H., Karimov, S., Boturov, U., Sanginboy, S., & Sharipov, A. K. (2006). Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39(4), 323–328.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Amir Khan
    • 1
  • Jyoti Singh
    • 1
  • Viabhav Kumar Upadhayay
    • 1
  • Ajay Veer Singh
    • 1
  • Shachi Shah
    • 2
  1. 1.Department of Microbiology, College of Basic Sciences and HumanitiesGBPUA&TPantnagarIndia
  2. 2.School of Interdisciplinary and Transdisciplinary StudiesIndira Gandhi National Open UniversityNew DelhiIndia

Personalised recommendations