Advertisement

Medical Therapy for Glaucoma-IOP Lowering Agents

  • Anna C. Momont
  • Paul L. KaufmanEmail author
Chapter

Abstract

Pharmacologic agents that lower intraocular pressure (IOP) are the first line of treatment for the majority of glaucoma patients. Classically these medications can be split into two groups: those that suppress aqueous production, and those that enhance aqueous outflow. Multiple formulations and combinations now exist in order to limit side effects and improve adherence. This chapter will review glaucoma medications that are currently available, those that will be available in the near future, and some “farther-down-the-road” technologies.

Keywords

Glaucoma Glaucoma medical treatment Glaucoma pharmacology Intraocular pressure Gene therapy Stem cell therapy 

References

  1. 1.
    Snell S. On eserine and pilocarpine in glaucoma, and eserine in ocular neuralgia. Br Med J. 1882;1(1118):811–2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Heij A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the early manifest Glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–79.CrossRefGoogle Scholar
  3. 3.
    Ederer F, Gaasterland DE, Sullivan EK. The advanced glaucoma intervention study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials. 1994;15(4):299–325.PubMedCrossRefGoogle Scholar
  4. 4.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829–30.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126(4):487–97.Google Scholar
  6. 6.
    Phillips CI, Howitt G, Rowlands DJ. Propranolol as ocular hypotensive agent. Br J Ophthalmol. 1967;51(4):222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch Ophthalmol. 1978;96(11):2045–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Zimmerman TJ. Kaufman HE. Timolol. A beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol. 1977;95(4):601–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Zimmerman TJ, Kaufman HE. Timolol, dose response and duration of action. Arch Ophthalmol. 1977;95(4):605–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Ritch R, Hargett NA, Podos SM. The effect of 1.5% timolol maleate on intraocular pressure. Acta Ophthalmol. 1978;56(1):6–10.CrossRefGoogle Scholar
  11. 11.
    Boger WP 3rd, Steinert RF, Thomas JV. Timolol in the therapy of “ocular hypertension”. Surv Ophthalmol. 1980;25(3):195–202.PubMedCrossRefGoogle Scholar
  12. 12.
    Lin LL, Galin MA, Obstbaum SA, Katz I. Longterm timolol therapy. Surv Ophthalmol. 1979;23(6):377–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang WY, Po AL, Dua HS, Azuara-Blanco A. Meta-analysis of randomised controlled trials comparing latanoprost with timolol in the treatment of patients with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2001;85(8):983–90.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26(10):1315–9.PubMedGoogle Scholar
  15. 15.
    Quaranta L, Gandolfo F, Turano R, Rovida F, Pizzolante T, Musig A, et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci. 2006;47(7):2917–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Steinert RF, Thomas JV, Boger WP 3rd. Long-term drift and continued efficacy after multiyear timolol therapy. Arch Ophthalmol. 1981;99(1):100–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Rakofsky SI, Lazar M, Almog Y, LeBlanc RP, Mann C, Orr A, et al. Efficacy and safety of once-daily levobunolol for glaucoma therapy. Can J Ophthalmol. 1989;24(1):2–6.PubMedGoogle Scholar
  18. 18.
    McMahon CD, Shaffer RN, Hoskins HD Jr, Hetherington J Jr. Adverse effects experienced by patients taking timolol. Am J Ophthalmol. 1979;88(4):736–8.CrossRefGoogle Scholar
  19. 19.
    Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87(5):447–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonomi L, Zavarise G, Noya E, Michieletto S. Effects of timolol maleate on tear flow in human eyes. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;213(1):19–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, Kuritsky JN. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978-1985. Am J Ophthalmol. 1986;102(5):606–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Sadiq SA, Fielding K, Vernon SA. The effect of timolol drops on respiratory function. Eye (Lond). 1998;12(Pt 3a):386–9.CrossRefGoogle Scholar
  23. 23.
    Shaivitz SA. Timolol and myasthenia gravis. JAMA. 1979;242(15):1611–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Velde TM, Kaiser FE. Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med. 1983;143(8):1627.PubMedCrossRefGoogle Scholar
  25. 25.
    Zimmerman TJ, Sharir M, Nardin GF, Fuqua M. Therapeutic index of pilocarpine, carbachol, and timolol with nasolacrimal occlusion. Am J Ophthalmol. 1992;114(1):1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    The Levobunolol Study Group (Appended). Levobunolol. A beta-adrenoceptor antagonist effective in the long-term treatment of glaucoma. Ophthalmology. 1985;92(9):1271–6.Google Scholar
  27. 27.
    Wandel T, Charap AD, Lewis RA, Partamian L, Cobb S, Lue JC, et al. Glaucoma treatment with once-daily levobunolol. Am J Ophthalmol. 1986;101(3):298–304.PubMedCrossRefGoogle Scholar
  28. 28.
    Muller O, Knobel HR. Effectiveness and tolerance of metipranolol--results of a multi-center long-term study in Switzerland. Klin Monbl Augenheilkd. 1986;188(1):62–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Bleckmann H, Duy TP, Grajewski O. Therapeutic efficacy of metipranolol eye drops 0.3% versus timolol eye drops 0.25%. In: Merté HJ, editor. Metipranolol. Vienna: Springer; 1984.Google Scholar
  30. 30.
    Akingbehin T, Villada JR. Metipranolol-associated granulomatous anterior uveitis. Br J Ophthalmol. 1991;75(9):519–23.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schnarr KD. Comparative multicenter study of carteolol eyedrops with other beta blockers in 768 patients under normal conditions. Klin Monbl Augenheilkd. 1988;192(2):167–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Stewart WC, Shields MB, Allen RC, Lewis RA, Cohen JS, Hoskins HD, et al. A 3-month comparison of 1% and 2% carteolol and 0.5% timolol in open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1991;229(3):258–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Frishman WH, Covey S. Penbutolol and carteolol: two new beta-adrenergic blockers with partial agonism. J Clin Pharmacol. 1990;30(5):412–21.PubMedCrossRefGoogle Scholar
  34. 34.
    van Brummelen P. The relevance of intrinsic sympathomimetic activity for beta-blocker-induced changes in plasma lipids. J Cardiovasc Pharmacol. 1983;5(Suppl 1):S51–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology. 1983;90(11):1369–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Caldwell DR, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol. 1984;102(4):539–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol, a beta 1-adrenergic antagonist. Am J Ophthalmol. 1985;100(6):777–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Stewart RH, Kimbrough RL, Ward RL. Betaxolol vs timolol. A six-month double-blind comparison. Arch Ophthalmol. 1986;104(1):46–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Dunn TL, Gerber MJ, Shen AS, Fernandez E, Iseman MD, Cherniack RM. The effect of topical ophthalmic instillation of timolol and betaxolol on lung function in asthmatic subjects. Am Rev Respir Dis. 1986;133(2):264–8.PubMedGoogle Scholar
  40. 40.
    Schoene RB, Abuan T, Ward RL, Beasley CH. Effects of topical betaxolol, timolol, and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol. 1984;97(1):86–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol. 1986;102(2):274–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Roholt PC. Betaxolol and restrictive airway disease. Case report. Arch Ophthalmol. 1987;105(9):1172.PubMedCrossRefGoogle Scholar
  43. 43.
    Vuori ML, Ali-Melkkila T, Kaila T, Iisalo E, Saari KM. Beta 1- and beta 2-antagonist activity of topically applied betaxolol and timolol in the systemic circulation. Acta Ophthalmol. 1993;71(5):682–5.CrossRefGoogle Scholar
  44. 44.
    Lynch MG, Whitson JT, Brown RH, Nguyen H, Drake MM. Topical beta-blocker therapy and central nervous system side effects. A preliminary study comparing betaxolol and timolol. Arch Ophthalmol. 1988;106(7):908–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang YL, Hayashi M, Yablonski ME, Toris CB. Effects of multiple dosing of epinephrine on aqueous humor dynamics in human eyes. J Ocul Pharmacol Ther. 2002;18(1):53–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Schenker HI, Yablonski ME, Podos SM. Linder L. Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol. 1981;99(7):1212–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Garner LL, Johnstone WW, Ballintine EJ, Carroll ME. Effect of 2% levo-rotary epinephrine on the intraocular pressure of the glaucomatous eye. AMA Arch Ophthalmol. 1959;62(2):230–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Becker B, Pettit TH, Gay AJ. Topical epinephrine therapy of open-angle glaucoma. Arch Ophthalmol. 1961;66:219–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin Pharmacother. 2009;10(16):2663–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology. 1978;85(3):268–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Krieglstein GK, Gramer E. The response of ophthalmic arterial pressure to topically applied clonidine. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;207(1):1–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Gharagozloo NZ, Relf SJ, Brubaker RF. Aqueous flow is reduced by the alpha-adrenergic agonist, apraclonidine hydrochloride (ALO 2145). Ophthalmology. 1988;95(9):1217–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Abrams DA, Robin AL, Pollack IP, de Faller JM, DeSantis L. The safety and efficacy of topical 1% ALO 2145 (p-aminoclonidine hydrochloride) in normal volunteers. Arch Ophthalmol. 1987;105(9):1205–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Stewart WC, Ritch R, Shin DH, Lehmann RP, Shrader CE, van Buskirk EM. The efficacy of apraclonidine as an adjunct to timolol therapy. Apraclonidine adjunctive therapy study group. Arch Ophthalmol. 1995;113(3):287–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Stewart WC. Effect and side effects of apraclonidine. Klin Monbl Augenheilkd. 1996;209(1):A7–13.PubMedGoogle Scholar
  56. 56.
    Butler P, Mannschreck M, Lin S, Hwang I, Alvarado J. Clinical experience with the long-term use of 1% apraclonidine. Incidence of allergic reactions. Arch Ophthalmol. 1995;113(3):293–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Burke J, Schwartz M. Preclinical evaluation of brimonidine. Surv Ophthalmol. 1996;41(Suppl 1):S9–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113(12):1514–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Walters TR. Development and use of brimonidine in treating acute and chronic elevations of intraocular pressure: a review of safety, efficacy, dose response, and dosing studies. Surv Ophthalmol. 1996;41(Suppl 1):S19–26.PubMedCrossRefGoogle Scholar
  60. 60.
    Katz LJ. Brimonidine tartrate 0.2% twice daily vs timolol 0.5% twice daily: 1-year results in glaucoma patients. Brimonidine study group. Am J Ophthalmol. 1999;127(1):20–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Fung AT, Reid SE, Jones MP, Healey PR, McCluskey PJ, Craig JC. Meta-analysis of randomised controlled trials comparing latanoprost with brimonidine in the treatment of open-angle glaucoma, ocular hypertension or normal-tension glaucoma. Br J Ophthalmol. 2007;91(1):62–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee DA, Gornbein JA. Effectiveness and safety of brimonidine as adjunctive therapy for patients with elevated intraocular pressure in a large, open-label community trial. J Glaucoma. 2001;10(3):220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wen R, Cheng T, Li Y, Cao W, Steinberg RH. Alpha 2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci. 1996;16(19):5986–92.PubMedCrossRefGoogle Scholar
  64. 64.
    WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2001;42(12):2849–55.PubMedGoogle Scholar
  65. 65.
    Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure Glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.PubMedCrossRefGoogle Scholar
  66. 66.
    RP LB. Twelve-month results of an ongoing randomized trial comparing brimonidine tartrate 0.2% and timolol 0.5% given twice daily in patients with glaucoma or ocular hypertension. Brimonidine study group 2. Ophthalmology. 1998;105(10):1960–7.CrossRefGoogle Scholar
  67. 67.
    Melamed S, David R. Ongoing clinical assessment of the safety profile and efficacy of brimonidine compared with timolol: year-three results. Brimonidine study group II. Clin Ther. 2000;22(1):103–11.PubMedCrossRefGoogle Scholar
  68. 68.
    Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J AAPOS. 2001;5(5):281–4.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Carlsen JO, Zabriskie NA, Kwon YH, Barbe ME, Scott WE. Apparent central nervous system depression in infants after the use of topical brimonidine. Am J Ophthalmol. 1999;128(2):255–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Soto-Perez-de-Celis E, Skvirsky DO, Cisneros BG. Unintentional ingestion of brimonidine antiglaucoma drops: a case report and review of the literature. Pediatr Emerg Care. 2007;23(9):657–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Vanhaesebrouck S, Cossey V, Cosaert K, Allegaert K, Naulaers G. Cardiorespiratory depression and hyperglycemia after unintentional ingestion of brimonidine in a neonate. Eur J Ophthalmol. 2009;19(4):694–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Schuman JS, Horwitz B, Choplin NT, David R, Albracht D, Chen K. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension. A controlled, randomized, multicenter clinical trial. Chronic Brimonidine study group. Arch Ophthalmol. 1997;115(7):847–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Rahman MQ, Montgomery DM, Lazaridou MN. Surveillance of glaucoma medical therapy in a Glasgow teaching hospital: 26 years’ experience. Br J Ophthalmol. 2009;93(12):1572–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Osborne SA, Montgomery DM, Morris D, McKay IC. Alphagan allergy may increase the propensity for multiple eye-drop allergy. Eye (Lond). 2005;19(2):129–37.CrossRefGoogle Scholar
  75. 75.
    Beltz J, Zamir E. Brimonidine induced anterior uveitis. Ocul Immunol Inflamm. 2016;24(2):128–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Byles DB, Frith P, Salmon JF. Anterior uveitis as a side effect of topical brimonidine. Am J Ophthalmol. 2000;130(3):287–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Cates CA, Jeffrey MN. Granulomatous anterior uveitis associated with 0.2% topical brimonidine. Eye (Lond). 2003;17(5):670–1.CrossRefGoogle Scholar
  78. 78.
    Watts P, Hawksworth N. Delayed hypersensitivity to brimonidine tartrate 0.2% associated with high intraocular pressure. Eye (Lond). 2002;16(2):132–5.CrossRefGoogle Scholar
  79. 79.
    Kaufman PL. Aqueous humor dynamics following total iridectomy in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1979;18(8):870–4.PubMedGoogle Scholar
  80. 80.
    Kaufman PL, Barany EH. Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Investig Ophthalmol. 1976;15(10):793–807.Google Scholar
  81. 81.
    Drance SM, Nash PA. The dose response of human intraocular pressure to pilocarpine. Can J Ophthalmol. 1971;6(1):9–13.PubMedGoogle Scholar
  82. 82.
    Poinoosawmy D, Nagasubramanian S, Brown NA. Effect of pilocarpine on visual acuity and on the dimensions of the cornea and anterior chamber. Br J Ophthalmol. 1976;60(10):676–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Levene RZ. Uniocular miotic therapy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1975;79(2):Op376–80.PubMedGoogle Scholar
  84. 84.
    Pape LG, Forbes M. Retinal detachment and miotic therapy. Am J Ophthalmol. 1978;85(4):558–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Zimmerman TJ, Wheeler TM. Miotics: side effects and ways to avoid them. Ophthalmology. 1982;89(1):76–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Duncan G, Collison DJ. Role of the non-neuronal cholinergic system in the eye: a review. Life Sci. 2003;72(18–19):2013–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Reichert RW, Shields MB, Stewart WC. Intraocular pressure response to replacing pilocarpine with carbachol. Am J Ophthalmol. 1988;106(6):747–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Pantuck EJ. Ecothiopate iodide eye drops and prolonged response to suxamethonium. Br J Anaesth. 1966;38(5):406–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Gesztes T. Prolonged apnoea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesth. 1966;38(5):408–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(2):146–89.PubMedCrossRefGoogle Scholar
  91. 91.
    Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox; a preliminary report. Am J Ophthalmol. 1954;37(1):13–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Grant WM, Trotter RR. Diamox (acetazolamide) in treatment of glaucoma. AMA Arch Ophthalmol. 1954;51(6):735–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Dahlen K, Epstein DL, Grant WM, Hutchinson BT, Prien EL Jr, Krall JMA. Repeated dose-response study of methazolamide in glaucoma. Arch Ophthalmol. 1978;96(12):2214–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Lichter PR. Reducing side effects of carbonic anhydrase inhibitors. Ophthalmology. 1981;88(3):266–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Fraunfelder FT, Meyer SM, Bagby GC Jr, Dreis MW. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol. 1985;100(1):79–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Murphy RM, Bakir B, O’Brien C, Wiggs JL, Pasquale LR. Drug-induced bilateral secondary angle-closure Glaucoma: a literature synthesis. J Glaucoma. 2016;25(2):e99–105.PubMedCrossRefGoogle Scholar
  97. 97.
    Her Y, Kil MS, Park JH, Kim CW, Kim SS. Stevens-Johnson syndrome induced by acetazolamide. J Dermatol. 2011;38(3):272–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Shirato S, Kagaya F, Suzuki Y, Joukou S. Stevens-Johnson syndrome induced by methazolamide treatment. Arch Ophthalmol. 1997;115(4):550–3.PubMedCrossRefGoogle Scholar
  99. 99.
    Sud RN, Grewal SS. Stevens Johnson syndrome due to Diamox. Indian J Ophthalmol. 1981;29(2):101–3.PubMedGoogle Scholar
  100. 100.
    Hoyng PF, van Beek LM. Pharmacological therapy for glaucoma: a review. Drugs. 2000;59(3):411–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Sugrue MF, Mallorga P, Schwam H, Baldwin JJ, Ponticello GS. A comparison of L-671,152 and MK-927, two topically effective ocular hypotensive carbonic anhydrase inhibitors, in experimental animals. Curr Eye Res. 1990;9(6):607–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Pfeiffer N. Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol. 1997;42(2):137–51.PubMedCrossRefGoogle Scholar
  103. 103.
    Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995;113(8):1009–16.PubMedCrossRefGoogle Scholar
  104. 104.
    Cheng JW, Cheng SW, Yu DY, Wei RL, Lu GC. Meta-analysis of alpha2-adrenergic agonists versus carbonic anhydrase inhibitors as adjunctive therapy. Curr Med Res Opin. 2012;28(4):543–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Orzalesi N, Rossetti L, Invernizzi T, Bottoli A, Autelitano A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2000;41(9):2566–73.PubMedGoogle Scholar
  106. 106.
    Costagliola C, Campa C, Parmeggiani F, Incorvaia C, Perri P, D’Angelo S, et al. Effect of 2% dorzolamide on retinal blood flow: a study on juvenile primary open-angle glaucoma patients already receiving 0.5% timolol. Br J Clin Pharmacol. 2007;63(3):376–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Wirtitsch MG, Findl O, Heinzl H, Drexler W. Effect of dorzolamide hydrochloride on central corneal thickness in humans with cornea guttata. Arch Ophthalmol. 2007;125(10):1345–50.PubMedCrossRefGoogle Scholar
  108. 108.
    Silver LH. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. Brinzolamide primary therapy study group. Am J Ophthalmol. 1998;126(3):400–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Silver LH. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: results from two multicenter comfort studies. Brinzolamide comfort study group. Surv Ophthalmol. 2000;44(Suppl 2):S141–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Toris CB, Gabelt BT, Kaufman PL. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv Ophthalmol. 2008;53(Suppl1):S107–20.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Toris CB, Camras CB, Yablonski ME, Brubaker RF. Effects of exogenous prostaglandins on aqueous humor dynamics and blood-aqueous barrier function. Surv Ophthalmol. 1997;41(Suppl 2):S69–75.PubMedCrossRefGoogle Scholar
  112. 112.
    Alm A, Camras CB, Watson PG. Phase III latanoprost studies in Scandinavia, the United Kingdom and the United States. Surv Ophthalmol. 1997;41(Suppl 2):S105–10.PubMedCrossRefGoogle Scholar
  113. 113.
    Larsson LI, Mishima HK, Takamatsu M, Orzalesi N, Rossetti L. The effect of latanoprost on circadian intraocular pressure. Surv Ophthalmol. 2002;47(Suppl 1):S90–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Costagliola C, Del Prete A, Verolino M, Antinozzi P, Fusco R, Parmeggiani F, et al. Effect of 0.005% latanoprost once daily on intraocular pressure in glaucomatous patients not adequately controlled by beta-blockers twice daily: a 3-year follow-up. Experience and incidence of side effects in a prospective study on 76 patients. Graefes Arch Clin Exp Ophthalmol. 2002;240(5):379–86.PubMedCrossRefGoogle Scholar
  115. 115.
    Perry CM, McGavin JK, Culy CR, Ibbotson T. Latanoprost: an update of its use in glaucoma and ocular hypertension. Drugs Aging. 2003;20(8):597–630.PubMedCrossRefGoogle Scholar
  116. 116.
    Susanna R Jr, Chew P, Kitazawa Y. Current status of prostaglandin therapy: latanoprost and unoprostone. Surv Ophthalmol. 2002;47(Suppl 1):S97–104.PubMedCrossRefGoogle Scholar
  117. 117.
    Goldberg I, Li XY, Selaru P, Paggiarino D. A 5-year, randomized, open-label safety study of latanoprost and usual care in patients with open-angle glaucoma or ocular hypertension. Eur J Ophthalmol. 2008;18(3):408–16.PubMedCrossRefGoogle Scholar
  118. 118.
    Netland PA, Landry T, Sullivan EK, Andrew R, Silver L, Weiner A, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–84.PubMedCrossRefGoogle Scholar
  119. 119.
    Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl1):S69–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Gandolfi S, Simmons ST, Sturm R, Chen K, Van Denburgh AM. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther. 2001;18(3):110–21.PubMedCrossRefGoogle Scholar
  121. 121.
    Katz LJ, Cohen JS, Batoosingh AL, Felix C, Shu V, Schiffman RM. Twelve-month, randomized, controlled trial of bimatoprost 0.01%, 0.0125%, and 0.03% in patients with glaucoma or ocular hypertension. Am J Ophthalmol. 2010;149(4):661–71.e1.PubMedCrossRefGoogle Scholar
  122. 122.
    Swymer C, Neville MW. Tafluprost: the first preservative-free prostaglandin to treat open-angle glaucoma and ocular hypertension. Ann Pharmacother. 2012;46(11):1506–10.PubMedCrossRefGoogle Scholar
  123. 123.
    Gandolfi SA, Cimino L. Effect of bimatoprost on patients with primary open-angle glaucoma or ocular hypertension who are nonresponders to latanoprost. Ophthalmology. 2003;110(3):609–14.PubMedCrossRefGoogle Scholar
  124. 124.
    Kaback M, Geanon J, Katz G, Ripkin D, Przydryga J. Ocular hypotensive efficacy of travoprost in patients unsuccessfully treated with latanoprost. Curr Med Res Opin. 2004;20(9):1341–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Williams RD. Efficacy of bimatoprost in glaucoma and ocular hypertension unresponsive to latanoprost. Adv Ther. 2002;19(6):275–81.PubMedCrossRefGoogle Scholar
  126. 126.
    Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure - part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides. Expert Opin Pharmacother. 2009;10(17):2859–70.PubMedCrossRefGoogle Scholar
  127. 127.
    Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol. 2008;53(Suppl1):S93–105.PubMedCrossRefGoogle Scholar
  128. 128.
    Warwar RE, Bullock JD, Ballal D. Cystoid macular edema and anterior uveitis associated with latanoprost use. Experience and incidence in a retrospective review of 94 patients. Ophthalmology. 1998;105(2):263–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Lima MC, Paranhos A Jr, Salim S, Honkanen R, Devgan L, Wand M, et al. Visually significant cystoid macular edema in pseudophakic and aphakic patients with glaucoma receiving latanoprost. J Glaucoma. 2000;9(4):317–21.PubMedCrossRefGoogle Scholar
  130. 130.
    Fechtner RD, Khouri AS, Zimmerman TJ, Bullock J, Feldman R, Kulkarni P, et al. Anterior uveitis associated with latanoprost. Am J Ophthalmol. 1998;126(1):37–41.PubMedCrossRefGoogle Scholar
  131. 131.
    Wand M, Gilbert CM, Liesegang TJ. Latanoprost and herpes simplex keratitis. Am J Ophthalmol. 1999;127(5):602–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Kroll DM, Schuman JS. Reactivation of herpes simplex virus keratitis after initiating bimatoprost treatment for glaucoma. Am J Ophthalmol. 2002;133(3):401–3.PubMedCrossRefGoogle Scholar
  133. 133.
    Bean G, Reardon G, Zimmerman TJ. Association between ocular herpes simplex virus and topical ocular hypotensive therapy. J Glaucoma. 2004;13(5):361–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99(6):738–45.PubMedCrossRefGoogle Scholar
  135. 135.
    Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J. Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;123(5):965–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Kawase K, Vittitow JL, Weinreb RN, Araie M. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the JUPITER study. Adv Ther. 2016;33(9):1612–27.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Sugiyama T, Shibata M, Kajiura S, Okuno T, Tonari M, Oku H, et al. Effects of fasudil, a rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci. 2011;52(1):64–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y, et al. A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 2007;205(1):230–40.PubMedCrossRefGoogle Scholar
  140. 140.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156(4):731–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133(7):755–61.PubMedCrossRefGoogle Scholar
  142. 142.
    Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 1 clinical trials of a selective rho kinase inhibitor, K-115. JAMA Ophthalmol. 2013;131(10):1288–95.PubMedCrossRefGoogle Scholar
  143. 143.
    Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.PubMedCrossRefGoogle Scholar
  144. 144.
    Ormrod D, McClellan K. Topical dorzolamide 2%/timolol 0.5%: a review of its use in the treatment of open-angle glaucoma. Drugs Aging. 2000;17(6):477–96.PubMedCrossRefGoogle Scholar
  145. 145.
    Craven ER, Walters TR, Williams R, Chou C, Cheetham JK, Schiffman R. Brimonidine and timolol fixed-combination therapy versus monotherapy: a 3-month randomized trial in patients with glaucoma or ocular hypertension. J Ocul Pharmacol Ther. 2005;21(4):337–48.PubMedCrossRefGoogle Scholar
  146. 146.
    Sharma S, Trikha S, Perera SA, Aung T. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol. 2015;9:2201–7.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Lewis RA, Levy B, Ramirez N, Kopczynski CC, Usner DW, Novack GD. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100(3):339–44.PubMedCrossRefGoogle Scholar
  148. 148.
    Vignal C, Uretsky S, Fitoussi S, Galy A, Blouin L, Girmens JF, Bidot S, Thomasson N, Bouquet C, Valero S, Meunier S, Combal JP, Gilly B, Katz B, Sahel JA. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7. pii: S0161-6420(17)33673-4.PubMedCrossRefGoogle Scholar
  149. 149.
    Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB. Retinal gene therapy. Br Med Bull. 2018;126(1):13–25.PubMedCrossRefGoogle Scholar
  150. 150.
    Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL. Gene therapy for leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Ashtari M, Nikonova ES, Marshall KA, Young GJ, Aravand P, Pan W, Ying GS, Willett AE, Mahmoudian M, Maguire AM, Bennett J. The role of the human visual cortex in assessment of the long-term durability of retinal gene therapy in follow-on RPE65 clinical trial patients. Ophthalmology. 2017;124(6):873–83.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Duong TT, Vasireddy V, Ramachandran P, Herrera PS, Leo L, Merkel C, Bennett J, Mills JA. Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Res. 2018;27:140–50.PubMedCrossRefGoogle Scholar
  153. 153.
    Patrício MI, MacLaren RE. Retinal gene therapy for choroideremia: in vitro testing for gene augmentation using an adeno-associated viral (aav) vector. Methods Mol Biol. 2018;1715:89–97.PubMedCrossRefGoogle Scholar
  154. 154.
    MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kaufman PL. Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating mother nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res. 2008;86:3–17.PubMedCrossRefGoogle Scholar
  156. 156.
    Rasmussen CA, Kaufman PL. Novel therapeutic approaches for glaucoma. Drugs Fut. 2011;36(4):287.CrossRefGoogle Scholar
  157. 157.
    Kaufman PL, Rasmussen CA. Advances in glaucoma treatment and management: outflow drugs. Invest Ophthalmol Vis Sci. 2012;53(5):2495–500.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Tian B, Gabelt BT, Geiger B, Kaufman PL. The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res. 2009;88(4):713–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Tian B, Kaufman PL. Comparisons of actin filament disruptors and rho kinase inhibitors as potential antiglaucoma medications. Expert Rev Ophthalmol. 2012;7(2):177–87.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD, Sit AJ. The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocul Pharmacol Ther. 2018;34(5):380–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, Novack GD, Kopczynski CC, ROCKET-1 and ROCKET-2 Study Groups. Two phase 3 clinical trials comparing the safety and efficacy of Netarsudil to Timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.PubMedCrossRefGoogle Scholar
  162. 162.
    Weinreb RN, Liebmann JM, Martin KR, Kaufman PL, Vittitow JL. Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings. J Glaucoma. 2018;27(1):7–15.PubMedGoogle Scholar
  163. 163.
    Barraza RA, Rasmussen CA, Loewen N, Cameron JD, Gabelt BT, Teo WL, Kaufman PL, Poeschla EM. Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway of nonhuman primates. Hum Gene Ther. 2009;20(3):191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Buie LK, Rasmussen CA, Porterfield EC, Ramgolam VS, Choi VW, Markovic-Plese S, Samulski RJ, Kaufman PL, Borrás T. Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Vis Sci. 2010;51(1):236–48.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Aktas Z, Tian B, McDonald J, Yamamato R, Larsen C, Kiland J, Kaufman PL, Rasmussen CA. Application of canaloplasty in glaucoma gene therapy: where are we? J Ocul Pharmacol Ther. 2014;30(2–3):277–82.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lewallen M, Xie T. Cell-based therapies for retinal degenerative diseases: a thousand strategies. J Glaucoma. 2013;22(Suppl 5):S42–5.PubMedCrossRefGoogle Scholar
  167. 167.
    Eveleth DD. Cell-based therapies for ocular disease. J Ocul Pharmacol Ther. 2013;29(10):844–54.PubMedCrossRefGoogle Scholar
  168. 168.
    Cyranoski D. Stem cells cruise to clinic. Nature. 2013;494(7438):413.PubMedCrossRefGoogle Scholar
  169. 169.
    Wright LS, Phillips MJ, Pinilla I, Hei D, Gamm DM. Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale. Exp Eye Res. 2014;123:161–72. pii: S0014-4835(13)00345-X.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Phillips MJ, Capowski EE, Petersen A, Jansen AD, Barlow K, Edwards KL, Gamm DM. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci Rep. 2018;8(1):2370.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO, Gamm DM, Clegg DO. Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther. 2016;32(5):317–30.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Singh R, Phillips MJ, Kuai D, Meyer J, Martin JM, Smith MA, Perez ET, Shen W, Wallace KA, Capowski EE, Wright LS, Gamm DM. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci. 2013;54(10):6767–78.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS. Retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Reports. 2018;10(4):1282–93.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–62.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33(3):751–61.  https://doi.org/10.1002/stem.1885.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R, Bull ND, Martin KR, Tomarev SI. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.PubMedCrossRefGoogle Scholar
  177. 177.
    Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010;51:6394–400.PubMedCrossRefGoogle Scholar
  178. 178.
    Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS. Transplantation of bdnf secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011;52:4506–15.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051–9.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Osborne A, Sanderson J, Martin KR. Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells. 2018;36(1):65–78.  https://doi.org/10.1002/stem.2722.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular injection of ES cell-derived neural progenitors improve visual function in retinal ganglion cell-depleted mouse models. Front Cell Neurosci. 2017;11:295.  https://doi.org/10.3389/fncel.2017.00295. eCollection 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Braunger BM, Ademoglu B, Koschade SE, Fuchshofer R, Gabelt BT, Kiland JA, Hennes-Beann EA, Brunner KG, Kaufman PL, Tamm ER. Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci. 2014;55(11):7499–507.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253–60.  https://doi.org/10.1089/jop.2016.0005.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Zhang Y, Cai S, Tseng SCG, Zhu YT. Isolation and expansion of multipotent progenitors from human trabecular meshwork. Sci Rep. 2018;8(1):2814.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Wisconsin, Department of Ophthalmology and Visual SciencesMadisonUSA

Personalised recommendations