Medical Treatment Strategy for Glaucoma

  • Yuhong Chen
  • Kuan Jiang
  • Gang Wei
  • Yi DaiEmail author


Glaucoma physicians frequently face dilemmas generated by atypical or complicated cases and must answer questions such as “yes or no,” “treat or wait,” “medication or surgery,” and “switch or add.” There are no gold standard answers to these questions. Treatment decisions are usually based on comprehensive evaluation of the type and stage of the disease, medical history, general condition, life habits, and life expectancy of the particular patient. Because glaucoma is a chronic, progressive disease that persists throughout patients’ lives, therapy should be always considered from long-term and holistic views.

Primary open-angle glaucoma and primary angle-closure glaucoma are the two most important types of primary glaucoma. Although they share characteristics, especially in the relatively advanced stages, they have completely different pathogeneses, leading to different treatment strategies. In the first part of this chapter, we discuss basic questions about the principles of medical treatment for glaucoma, such as the goals for therapy, when to start treatment, how to choose medications, and to what extent we should treat.

Due to the particular anatomical and physiological structure of the eye, ocular drug delivery remains a significant challenge because of various barriers that protect the eye from harmful exterior substances and also therapeutics. Currently, drug delivery methods for ocular diseases can be divided into topical and systemic administration. Topical delivery is used more common than systemic delivery in glaucoma treatment, mainly because of its convenience and high level of patient compliance. In the second part of this chapter, we discuss barriers and absorption routes for ocular drug delivery. More importantly, we summarize delivery methods for various glaucoma therapy drugs in clinic settings, both topical and systemic methods.


Primary open-angle glaucoma (POAG) Primary angle-closure glaucoma (PACG) Ocular hypertension (OHT) Normal-tension glaucoma (NTG) High-tension glaucoma (HTG) Secondary glaucoma Target intraocular pressure (IOP) Drug therapy Topical Systemic 


  1. 1.
    European glaucoma society terminology and guidelines for glaucoma, 4th Edition - chapter 3: treatment principles and options supported by the EGS foundation: part 1: foreword; Introduction; glossary; chapter 3 treatment principles and options. Br J Ophthalmol. 2017;101(6):130–95.Google Scholar
  2. 2.
    Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Netland PA. Glaucoma medical therapy principles and management. Oxford: Oxford University Press In cooperation with The American Academy of Ophthalmology; 2008.Google Scholar
  4. 4.
    Prum BE Jr, et al. Primary open-angle glaucoma suspect preferred practice pattern (®) guidelines. Ophthalmology. 2016;123(1):P112–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Prum BE Jr, et al. Primary angle closure preferred practice pattern(®) guidelines. Ophthalmology. 2016;123(1):P1–P40.PubMedCrossRefGoogle Scholar
  6. 6.
    Sun X, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.CrossRefGoogle Scholar
  7. 7.
    Wilensky JT, et al. Follow-up of angle-closure glaucoma suspects. Am J Ophthalmol. 1993;115(3):338–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas R, et al. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol. 2003;87(4):450–4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bain WE. The fellow eye in acute closed-angle glaucoma. Br J Ophthalmol. 1957;41(4):193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lowe RF. Acute angle-closure glaucoma: the second eye: an analysis of 200 cases. Br J Ophthalmol. 1962;46(11):641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Saw SM, Gazzard G, Friedman DS. Interventions for angle-closure glaucoma: an evidence-based update. Ophthalmology. 2003;110(10):1869–78. quiz 1878–9, 1930.PubMedCrossRefGoogle Scholar
  12. 12.
    Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107(11):2092–6.PubMedCrossRefGoogle Scholar
  13. 13.
    European Glaucoma Society Terminology and Guidelines for Glaucoma. 4th edition - chapter 2: classification and terminology supported by the EGS foundation: part 1: foreword; introduction; glossary; chapter 2 classification and terminology. Br J Ophthalmol. 2017;101(5):73–127.CrossRefGoogle Scholar
  14. 14.
    Kass MA, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stewart WC, et al. Cost-effectiveness of treating ocular hypertension. Ophthalmology. 2008;115(1):94–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hitchings RA. A practical approach to the management of normal tension glaucoma. In: Essentials in ophthalmology: glaucoma. Berlin: Springer; 2004. p. 147–56.Google Scholar
  17. 17.
    Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131(6):699–708.PubMedCrossRefGoogle Scholar
  18. 18.
    Barton K, Hitchings RA. In: Budenz DL, editor. Medical Management of Glaucoma. Manchester: Springer Healthcare; 2013.CrossRefGoogle Scholar
  19. 19.
    Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma. 2003;12(3):232–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilensky JT, et al. Self-tonometry to manage patients with glaucoma and apparently controlled intraocular pressure. Arch Ophthalmol. 1987;105(8):1072–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu JH, Weinreb RN. Monitoring intraocular pressure for 24 h. Br J Ophthalmol. 2011;95(5):599–600.PubMedCrossRefGoogle Scholar
  22. 22.
    Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95(5):627–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Leske MC, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open angle glaucoma relative to severity of disease. Eye (Lond). 1989;3(Pt 5):528–35.CrossRefGoogle Scholar
  25. 25.
    Migdal C, Gregory W, Hitchings R. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology. 1994;101(10):1651–6. discussion 1657.PubMedCrossRefGoogle Scholar
  26. 26.
    The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Glaucoma Laser Trial Research Group. Am J Ophthalmol. 1995;120(6):718–31.Google Scholar
  27. 27.
    Lichter PR, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hedman K, Larsson LI. The effect of latanoprost compared with timolol in African-American, Asian, Caucasian, and Mexican open-angle glaucoma or ocular hypertensive patients. Surv Ophthalmol. 2002;47(Suppl 1):S77–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Netland PA, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Brandt JD, et al. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: a 3-month clinical trial. Ophthalmology. 2001;108(6):1023–31. discussion 1032.PubMedCrossRefGoogle Scholar
  31. 31.
    Fechtner RD, Realini T. Fixed combinations of topical glaucoma medications. Curr Opin Ophthalmol. 2004;15(2):132–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Heijl A, et al. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 2013;91(5):406–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Heijl A, et al. Natural history of open-angle glaucoma. Ophthalmology. 2009;116(12):2271–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Leske MC, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.CrossRefGoogle Scholar
  35. 35.
    Jampel HD. Target pressure in glaucoma therapy. J Glaucoma. 1997;6(2):133–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Heijl A, et al. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand. 2003;81(3):286–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Yu M, et al. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology. 2016;123(6):1201–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Fitzke FW, et al. Analysis of visual field progression in glaucoma. Br J Ophthalmol. 1996;80(1):40–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Leung CK, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119(9):1858–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Sung KR, et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119(2):308–13.PubMedCrossRefGoogle Scholar
  41. 41.
    The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429–40.Google Scholar
  42. 42.
    Musch DC, et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology. 2009;116(2):200–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Nouri-Mahdavi K, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111(9):1627–35.PubMedCrossRefGoogle Scholar
  44. 44.
    Martus P, et al. Predictive factors for progressive optic nerve damage in various types of chronic open-angle glaucoma. Am J Ophthalmol. 2005;139(6):999–1009.PubMedCrossRefGoogle Scholar
  45. 45.
    Tezel G, et al. Clinical factors associated with progression of glaucomatous optic disc damage in treated patients. Arch Ophthalmol. 2001;119(6):813–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Stewart WC, et al. Factors associated with long-term progression or stability in primary open-angle glaucoma. Am J Ophthalmol. 2000;130(3):274–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1999;237(2):105–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Suh MH, et al. Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography. J Glaucoma. 2012;21(6):358–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Medeiros FA, et al. Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am J Ophthalmol. 2003;136(5):805–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111(11):2126–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Jonas JB, et al. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci. 2005;46(4):1269–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Medeiros FA, et al. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533–40.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jonas JB, et al. Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2004;45(8):2613–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Charlson ME, et al. Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology. 2014;121(10):2004–12.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Armaly MF, et al. Biostatistical analysis of the collaborative glaucoma study. I. Summary report of the risk factors for glaucomatous visual-field defects. Arch Ophthalmol. 1980;98(12):2163–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Asrani S, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Nouri-Mahdavi K, Medeiros FA, Weinreb RN. Fluctuation of intraocular pressure as a predictor of visual field progression. Arch Ophthalmol. 2008;126(8):1168–9. author reply 1169–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008;115(7):1123–1129.e3.PubMedCrossRefGoogle Scholar
  59. 59.
    Bengtsson B, et al. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Hughes PM, Olejnik O, Chang-Lin JE, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Hosoya K, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60(2):227–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Baudouin C, Labbé A, Liang H, et al. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29(4):312–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Jaissle GB, Szurman P, Bartz-Schmidt KU. Ocular side effects and complications of intravitreal triamcinolone acetonide injection. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2004;101(2):121–8.CrossRefGoogle Scholar
  65. 65.
    Lux A, Maier S, Dinslage S, et al. A comparative bioavailability study of three conventional eye drops versus a single lyophilisate. Br J Ophthalmol. 2003;87(4):436–40.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Holló G, Bozkurt B, Irkec M. Brinzolamide/timolol fixed combination: a new ocular suspension for the treatment of open-angle glaucoma and ocular hypertension. Expert Opin Pharmacother. 2009;10(12):2015–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Prasad D, Chauhan H. Excipients utilized for ophthalmic drug delivery systems. In: Pathak Y, Sutariya V, Hirani AA, editors. Nano-biomaterials for ophthalmic drug delivery. Basel: Springer; 2016. p. 555–82.CrossRefGoogle Scholar
  68. 68.
    Vashist A, Vashist A, Gupta YK, et al. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2(2):147–66.CrossRefGoogle Scholar
  69. 69.
    Saini R, Saini S, Singh G, et al. In situ gels-a new trends in ophthalmic drug delivery system. Int J Pharm Sci Res. 2015;6:386–90.Google Scholar
  70. 70.
    Tártara LI, Quinteros DA, Saino V, et al. Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostructures as drug delivery system. J Ocul Pharmacol Ther. 2012;28(2):102–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012;8(5):776–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Farid RM, El-Salamouni NS, El-Kamel AH, et al. Lipid-based nanocarriers for ocular drug delivery. In: Andronescu E, Grumezescu AM, editors. Nanostructures for drug delivery; 2017. p. 495–522.CrossRefGoogle Scholar
  73. 73.
    Panatieri LF, Brazil NT, Faber K, et al. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular acanthamoeba keratitis. AAPS PharmSciTech. 2017;18(3):721–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Kassem MA, Rahman AAA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1):126–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine. 2007;2(1):11–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Alvarez-Trabado J, Diebold Y, Sanchez A. Designing lipid nanoparticles for topical ocular drug delivery. Int J Pharm. 2017;532(1):204–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Tsukamoto T, Hironaka K, Fujisawa T, et al. Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Asian J Pharm Sci. 2013;8(2):104–9.CrossRefGoogle Scholar
  78. 78.
    Patidar S, Jain S. Non ionic surfactant based vesicles (niosomes) containing flupirtine maleate as an ocular drug delivery system. J Chem Pharm Res. 2012;4(10):4495–500.Google Scholar
  79. 79.
    Cholkar K, Patel A, Dutt Vadlapudi A, et al. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kambhampati SP. Dendrimer based nanotherapeutics for ocular drug delivery. Ph.D. dissertation, Wayne State University, Detroit; 2014.Google Scholar
  81. 81.
    Nabih Maria D, Mishra SR, Wang L, et al. Water-soluble complex of curcumin with cyclodextrins: enhanced physical properties for ocular drug delivery. Curr Drug Deliv. 2017;14(6):875–86.Google Scholar
  82. 82.
    Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Bengani LC, Hsu KH, Gause S, et al. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv. 2013;10(11):1483–96.PubMedCrossRefGoogle Scholar
  84. 84.
    North DP. Treatment of acute glaucoma. Can Med Assoc J. 1971;105(6):561.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kaufman HE, Uotila MH, Gasset AR, et al. The medical uses of soft contact lenses. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(2):361–73.PubMedGoogle Scholar
  86. 86.
    Hillman JS. Management of acute glaucoma with pilocarpine-soaked hydrophilic lens. Br J Ophthalmol. 1974;58(7):674.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Peng CC, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 2010;31(14):4032–47.PubMedCrossRefGoogle Scholar
  88. 88.
    Fraunfelder FT, Meyer SM. Systemic side effects from ophthalmic timolol and their prevention. J Ocul Pharmacol Ther. 1987;3(2):177–84.CrossRefGoogle Scholar
  89. 89.
    Peng CC, Ben-Shlomo A, Mackay EO, et al. Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr Eye Res. 2012;37(3):204–11.PubMedCrossRefGoogle Scholar
  90. 90.
    González-Chomón C, Concheiro A, Alvarez-Lorenzo C. Soft contact lenses for controlled ocular delivery: 50 years in the making. Ther Deliv. 2013;4(9):1141–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Alvarez-Lorenzo C, Hiratani H, Gómez-Amoza JL, et al. Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci. 2002;91(10):2182–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Nikouei BM, Vahabzadeh SA, Mohajeri SA. Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv. 2013;10(3):279–85.CrossRefGoogle Scholar
  93. 93.
    Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289–300.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee SS, Hughes P, Ross AD, et al. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuhong Chen
    • 1
    • 2
    • 3
  • Kuan Jiang
    • 4
    • 5
  • Gang Wei
    • 4
    • 5
  • Yi Dai
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghaiChina
  3. 3.Shanghai Key Laboratory of Visual Impairment and RestorationFudan UniversityShanghaiChina
  4. 4.Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghaiChina
  5. 5.Department of Pharmaceutics, School of PharmacyFudan UniversityShanghaiChina

Personalised recommendations