Advertisement

Briefs on Evaluation Techniques for Glaucoma

  • Xiangmei Kong
  • Xinghuai SunEmail author
Chapter

Abstract

Accurate evaluation of glaucoma is the basis for effective control of this disease. The major parameters for glaucoma include intraocular pressure, anterior chamber angle, optic nerve head, and visual function. This chapter will focus briefly on the assessment of such parameters, including different tonometry and its influencing factors for IOP; gonioscopy, UBM, and AS-OCT for anterior chamber angle; ophthalmoscopy, fund photography, and OCT for optic nerve head and retina; and perimetry, contract sensitivity, ERG, and VEP for visual function.

Keywords

Intraocular pressure Anterior chamber angle Optic nerve head Visual function Ultrasound biomicroscopy Optical coherence tomography 

References

  1. 1.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720. discussion 829–30.CrossRefGoogle Scholar
  2. 2.
    Leonardi M, Leuenberger P, Bertrand D, Bertsch A, Renaud P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest Ophthalmol Vis Sci. 2004;45(9):3113–7.  https://doi.org/10.1167/iovs.04-0015.CrossRefPubMedGoogle Scholar
  3. 3.
    Damji KF, Muni RH, Munger RM. Influence of corneal variables on accuracy of intraocular pressure measurement. J Glaucoma. 2003;12(1):69–80.CrossRefGoogle Scholar
  4. 4.
    Ravin JG, Higginbotham EJ. Are we there yet? Celebrating the centennial of the Schiøtz tonometer. Arch Ophthalmol. 2006;124(9):1337–8.  https://doi.org/10.1001/archopht.124.9.1337.CrossRefPubMedGoogle Scholar
  5. 5.
    Hoffmann EM, Grus F-H, Pfeiffer N. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry. BMC Ophthalmol. 2004;4(1):4.  https://doi.org/10.1186/1471-2415-4-4.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kanngiesser HE, Kniestedt C, Robert YCA. Dynamic contour tonometry: presentation of a new tonometer. J Glaucoma. 2005;14(5):344–50.CrossRefGoogle Scholar
  7. 7.
    Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–62.  https://doi.org/10.1016/j.jcrs.2004.10.044.CrossRefPubMedGoogle Scholar
  8. 8.
    Medeiros FA, Weinreb RN. Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. J Glaucoma. 2006;15(5):364–70.  https://doi.org/10.1097/01.ijg.0000212268.42606.97.CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng J, Kong X, Xiao M, Sun X. Twenty-four-hour pattern of intra-ocular pressure in untreated patients with primary open-angle glaucoma. Acta Ophthalmol. 2016;94(6):e460–7.  https://doi.org/10.1111/aos.12963.CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng J, Xiao M, Xu H, et al. Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine (Baltimore). 2016;95(31):e4453.  https://doi.org/10.1097/MD.0000000000004453.CrossRefGoogle Scholar
  11. 11.
    Kakaday T, Hewitt AW, Voelcker NH, Li JSJ, Craig JE. Advances in telemetric continuous intraocular pressure assessment. Br J Ophthalmol. 2009;93(8):992–6.  https://doi.org/10.1136/bjo.2008.144261.CrossRefPubMedGoogle Scholar
  12. 12.
    Friedman DS, He M. Anterior chamber angle assessment techniques. Surv Ophthalmol. 2008;53(3):250–73.  https://doi.org/10.1016/j.survophthal.2007.10.012.CrossRefPubMedGoogle Scholar
  13. 13.
    Maslin JS, Barkana Y, Dorairaj SK. Anterior segment imaging in glaucoma: an updated review. Indian J Ophthalmol. 2015;63(8):630–40.  https://doi.org/10.4103/0301-4738.169787.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.  https://doi.org/10.1016/j.preteyeres.2016.12.003.CrossRefPubMedGoogle Scholar
  15. 15.
    Forbes M. Gonioscopy with corneal indentation. A method for distinguishing between appositional closure and synechial closure. Arch Ophthalmol. 1966;76(4):488–92.CrossRefGoogle Scholar
  16. 16.
    Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98(3):287–95.CrossRefGoogle Scholar
  17. 17.
    Dada T, Gadia R, Sharma A, et al. Ultrasound biomicroscopy in glaucoma. Surv Ophthalmol. 2011;56(5):433–50.  https://doi.org/10.1016/j.survophthal.2011.04.004.CrossRefPubMedGoogle Scholar
  18. 18.
    Salim S, Dorairaj S. Anterior segment imaging in glaucoma. Semin Ophthalmol. 2013;28(3):113–25.  https://doi.org/10.3109/08820538.2013.777749.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith SD, Singh K, Lin SC, et al. Evaluation of the anterior chamber angle in glaucoma: a report by the American academy of ophthalmology. Ophthalmology. 2013;120(10):1985–97.  https://doi.org/10.1016/j.ophtha.2013.05.034.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang D, Pekmezci M, Basham RP, He M, Seider MI, Lin SC. Comparison of different modes in optical coherence tomography and ultrasound biomicroscopy in anterior chamber angle assessment. J Glaucoma. 2009;18(6):472–8.  https://doi.org/10.1097/IJG.0b013e31818fb41d.CrossRefPubMedGoogle Scholar
  21. 21.
    Dada T, Sihota R, Gadia R, Aggarwal A, Mandal S, Gupta V. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007;33(5):837–40.  https://doi.org/10.1016/j.jcrs.2007.01.021.CrossRefPubMedGoogle Scholar
  22. 22.
    Angmo D, Nongpiur ME, Sharma R, Sidhu T, Sihota R, Dada T. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma. Oman J Ophthalmol. 2016;9(1):3–10.  https://doi.org/10.4103/0974-620X.176093.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dorairaj S, Tsai JC, Grippo TM. Changing trends of imaging in angle closure evaluation. ISRN Ophthalmol. 2012;2012:597124.  https://doi.org/10.5402/2012/597124.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Spaeth GL, Reddy SC. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard. Surv Ophthalmol. 2014;59(4):454–8.  https://doi.org/10.1016/j.survophthal.2013.10.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Akagi T, Zangwill LM, Saunders LJ, et al. Rates of local retinal nerve fiber layer thinning before and after disc hemorrhage in glaucoma. Ophthalmology. 2017;124(9):1403–11.  https://doi.org/10.1016/j.ophtha.2017.03.059.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98(Suppl 2):ii15–9.  https://doi.org/10.1136/bjophthalmol-2013-304326.CrossRefPubMedGoogle Scholar
  27. 27.
    Leung CK-S. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol. 2014;25(2):104–11.  https://doi.org/10.1097/ICU.0000000000000024.CrossRefPubMedGoogle Scholar
  28. 28.
    Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003;121(1):41–6.CrossRefGoogle Scholar
  29. 29.
    Wong JJ, Chen TC, Shen LQ, Pasquale LR. Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review. Semin Ophthalmol. 2012;27(5–6):160–6.  https://doi.org/10.3109/08820538.2012.712734.CrossRefPubMedGoogle Scholar
  30. 30.
    Mwanza J-C, Budenz DL. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression. Curr Opin Ophthalmol. 2016;27(2):102–10.  https://doi.org/10.1097/ICU.0000000000000231.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang X, Dastiridou A, Francis BA, et al. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am J Ophthalmol. 2017;184:63–74.  https://doi.org/10.1016/j.ajo.2017.09.020.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wan KH, Leung CKS. Optical coherence tomography angiography in glaucoma: a mini-review. F1000Res. 2017;6:1686.  https://doi.org/10.12688/f1000research.11691.1.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12):3127–37.  https://doi.org/10.1364/BOE.3.003127.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.  https://doi.org/10.1016/j.ophtha.2014.01.021.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu H, Yu J, Kong X, Sun X, Jiang C. Macular microvasculature alterations in patients with primary open-angle glaucoma: a cross-sectional study. Medicine (Baltimore). 2016;95(33):e4341.  https://doi.org/10.1097/MD.0000000000004341.CrossRefGoogle Scholar
  36. 36.
    El Beltagi TA, Bowd C, Boden C, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003;110(11):2185–91.  https://doi.org/10.1016/S0161-6420(03)00860-1.CrossRefPubMedGoogle Scholar
  37. 37.
    Phu J, Khuu SK, Yapp M, Assaad N, Hennessy MP, Kalloniatis M. The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. Clin Exp Optom. 2017;100(4):313–32.  https://doi.org/10.1111/cxo.12551.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Richman J, Spaeth GL, Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg. 2013;39(7):1100–6.  https://doi.org/10.1016/j.jcrs.2013.05.001.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol. 2016;27(2):118–24.  https://doi.org/10.1097/ICU.0000000000000241.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghaiChina
  3. 3.Shanghai Key Laboratory of Visual Impairment and RestorationFudan UniversityShanghaiChina
  4. 4.State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina

Personalised recommendations