Advertisement

Mechanism Theories of Glaucoma

  • William H. MorganEmail author
  • Dao-Yi Yu
Chapter

Abstract

Glaucoma is a disease of the optic nerve, wherein the anterior part of the nerve, the optic disk, undergoes posterior distortion (cupping and excavation) along with loss of the nerve fibres. This leads to peripheral and finally total visual field loss. The major risk factor is elevated IOP, which along with cerebrospinal fluid pressure (CSFP) largely determines the pressure gradient and forces acting upon the connective tissue, nerve fibres and vessels in that region. Constitutive vulnerability factors like myopic connective tissue thinning play a role in determining the effect of these forces and together broadly form the theoretical planks of the “mechanical” theory of causation. Vascular factors are known to be involved given the common occurrence of disk rim haemorrhages and retinal venous occlusions in the disease. Considerations of these and possible arterial changes have led to a “vascular” theory, although more recent work suggests that features of these two theories are inter-linked. The classification and treatment of glaucoma is currently determined largely by the mechanism of IOP elevation. Given that aqueous production is relatively constant, IOP is largely determined by the rate of aqueous egress from the eye. The passage of aqueous humour within the eye is critical for altering the configuration and function of the drainage angle. The rate of aqueous outflow from the eye via the trabecular meshwork and ciliary body through small channels vitally affects IOP stability and control and is a key factor in glaucoma causation.

Keywords

Glaucoma Intraocular pressure Optic disk Trabecular meshwork Lamina cribrosa Aetiology 

Notes

Acknowledgments

National Health and Medical Research Council Australia.

References

  1. 1.
    Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Balaratnasingam C, Morgan WH, Johnstone V, Pandav SS, Cringle SJ, Yu DY. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. Exp Eye Res. 2009;89:618–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44:5189–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Morgan WH, Hazelton ML, Yu DY. Retinal venous pulsation: expanding our understanding and use of this enigmatic phenomenon. Prog Retin Eye Res. 2016;55:82–107.PubMedCrossRefGoogle Scholar
  6. 6.
    Vrabec F. Glaucomatous cupping of the human optic disk. Graefes Arch Clin Exp Ophthalmol. 1976;198:223–34.CrossRefGoogle Scholar
  7. 7.
    Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci. 2012;13:183–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Chung RS, Staal JA, Mccormack GH, Dickson TC, Cozens MA, Chuckowree JA, Quilty MC, Vickers JC. Mild axonal stretch injury in vitro induces a progressive series of neurofilament alterations ultimately leading to delayed axotomy. J Neurotrauma. 2005;22:1081–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma. 1997;14:419–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem. 2010;112:1147–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disk movement with variations in intraocular and cerebrospinal fluid pressure. Inv Ophthalmol Vis Sci. 2002;43:3236–42.Google Scholar
  12. 12.
    Levy NS. The effects of elevated intraocular pressure on slow axonal protein flow. Investig Ophthalmol. 1974;13:691–5.Google Scholar
  13. 13.
    Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Inv Ophthalmol Vis Sci. 1977;16:426–40.Google Scholar
  14. 14.
    Quigley H, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Quigley HA, Addicks EM, Green R. Optic damage in human glaucoma III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischaemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Turpin A, Sampson GP, Mckendrick AM. Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map. Invest Ophthalmol Vis Sci. 2009;50:3249–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res. 2010;29:249–71.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibres. Ophthalmology. 1988;95:357–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Sample PA, Bosworth CF, Weinreb RN. The loss of visual function in glaucoma. Semin Ophthalmol. 2000;15:182–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Nelson P, Aspinall P, Papasouliotis O, Worton B, O’brien C. Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003;12:139–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Yun SC, Hahn IK, Sung KR, Yoon JY, Jeong D, Chung HS. Lamina cribrosa depth according to the level of axial length in normal and glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2015;253:2247–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2009;17:318–28.CrossRefGoogle Scholar
  23. 23.
    Downs JC. Optic nerve head biomechanics in aging and disease. Exp Eye Res. 2015;133:19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Stowell C, Burgoyne CF, Tamm ER, Ethier CR. Biomechanical aspects of axonal damage in glaucoma: a brief review. Exp Eye Res. 2017;157:13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ohno-Matsui K, Akiba M, Moriyama M, Ishibashi T, Tokoro T, Spaide RF. Imaging retrobulbar subarachnoid space around optic nerve by swept-source optical coherence tomography in eyes with pathologic myopia. Invest Ophthalmol Vis Sci. 2011;52:9644–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125:2095–104.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Balaratnasingam C, Morgan WH, Bass L, Matich G, Cringle SJ, Yu DY. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2007;48:3632–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Inv Ophthalmol Vis Sci. 1989;30:233–8.Google Scholar
  30. 30.
    Silver DM, Quigley HA. Aqueous flow through the iris-lens channel: estimates of differential pressure between the anterior and posterior chambers. J Glaucoma. 2004;13:100–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Constable IJ. Relation between pressure determined by ophthalmodynamometry and aortic pressure in the dog. Br J Ophthalmol. 1998;82:821–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Goldmann H, Schmidt T. Über Applanationstonometrie. Ophthalmologica. 1957;134:221–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Kotecha A, White E, Schlottmann PG, Garway-Heath DF. Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers. Ophthalmology. 2010;117:730–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Okafor KC, Brandt JD. Measuring intraocular pressure. Curr Opin Ophthalmol. 2015;26:103–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Moses RA, Hart WM. Intraocular pressure. In: Physiology of the eye, clinical application. St Louis: Mosby; 1987.Google Scholar
  36. 36.
    Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol. 1966;50:570–86.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989;107:186–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 1991;32:3145–66.PubMedGoogle Scholar
  40. 40.
    Civan MM, Macknight AD. The ins and outs of aqueous humour secretion. Exp Eye Res. 2004;78:625–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Carreon T, Van Der Merwe E, Fellman RL, Johnstone M, Bhattacharya SK. Aqueous outflow - a continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res. 2017;57:108–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Alm A, Nilsson SF. Uveoscleral outflow--a review. Exp Eye Res. 2009;88:760–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Brubaker RF. The flow of aqueous humor in the human eye. Trans Am Ophthalmol Soc. 1982;80:391–474.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chandler PA, Simmons RJ, Grant WM. Malignant glaucoma. Medical and surgical treatment. Am J Ophthalmol. 1968;66:495–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Ng WT, Morgan W. Mechanisms and treatment of primary angle closure: a review. Clin Exp Ophthalmol. 2012;40:e218–28.PubMedCrossRefGoogle Scholar
  46. 46.
    Prata TS, Dorairaj S, De Moraes CG, Mehta S, Sbeity Z, Tello C, Liebmann J, Ritch R. Is preoperative ciliary body and iris anatomical configuration a predictor of malignant glaucoma development? Clin Exp Ophthalmol. 2013;41:541–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Sun X, Dai Y, Chen Y, Yu DY, Cringle SJ, Chen J, Kong X, Wang X, Jiang C. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Ritch R, Shields MB, Krupin T. The glaucomas. St Louis: Mosby; 1996.Google Scholar
  49. 49.
    Maepea O, Bill A. The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Exp Eye Res. 1989;49:645–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes. Exp Eye Res. 2011;92:318–27.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82:545–57.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Grant W. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol. 1958;60:523–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Investig Ophthalmol. 1971;10:430–7.Google Scholar
  54. 54.
    Van Buskirk EM, Grant WM. Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol. 1973;76:632–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Bill A. The aqueous humor drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Investig Ophthalmol. 1965;4:911–9.Google Scholar
  56. 56.
    Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88:648–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Tektas OY, Lutjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. 2009;88:769–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Liton PB. The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res. 2016;144:29–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Brubaker RF. Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res. 2004;78:633–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Goldmann H. The aqueous veins and the Poiseuille law. Ophthalmologica. 1949;118:496–519.PubMedCrossRefGoogle Scholar
  61. 61.
    Schiotz H. Et nyt tonometer, tonometri. Norsk Mag Lægevidensk. 1905;66:597–622.Google Scholar
  62. 62.
    Selvadurai D, Hodge D, Sit AJ. Aqueous humor outflow facility by tonography does not change with body position. Invest Ophthalmol Vis Sci. 2010;51:1453–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Sit AJ, Ekdawi NS, Malihi M, Mclaren JW. A novel method for computerized measurement of episcleral venous pressure in humans. Exp Eye Res. 2011;92:537–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Lim KS, Nau CB, O’byrne MM, Hodge DO, Toris CB, Mclaren JW, Johnson DH. Mechanism of action of bimatoprost, latanoprost, and travoprost in healthy subjects. A crossover study. Ophthalmology. 2008;115:790–795.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Caprioli J, Coleman AL. Intraocular pressure fluctuation. A risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008;115:1123–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Mansouri K, Orguel S, Mermoud A, Haefliger I, Flammer J, Ravinet E, Shaarawy T. Quality of diurnal intraocular pressure control in primary open-angle patients treated with latanoprost compared with surgically treated glaucoma patients: a prospective trial. Br J Ophthalmol. 2008;92:332–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Killer HE, Laeng HR, Flammer J, Groscurth P. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol. 2003;87:777–81.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39:1419–28.PubMedGoogle Scholar
  69. 69.
    Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disk. J Glaucoma. 2008;17:408–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Magnaes B. Body position and cerebrospinal fluid pressure. Part 2. Clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg. 1976;44:698–705.PubMedCrossRefGoogle Scholar
  71. 71.
    Moller PM. The pressure in the orbit. Acta Ophthalmol Suppl. 1955;43:1–100.Google Scholar
  72. 72.
    Morgan WH. Pressure gradients across the optic disk. PhD, University of Western Australia; 1999.Google Scholar
  73. 73.
    Berdahl JP, Allingham R, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115:763–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117:259–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Linden C, Qvarlander S, Johannesson G, Johansson E, Ostlund F, Malm J, Eklund A. Normal-tension glaucoma has normal intracranial pressure: a prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology. 2018;125(3):361–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130:514–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Zweifach BW. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res. 1974;34:843–57.PubMedGoogle Scholar
  78. 78.
    Ochs S. Energy metabolism and supply of -P to the fast axoplasmic transport mechanism in nerve. Fed Proc. 1974;33:1049–58.Google Scholar
  79. 79.
    Balaratnasingam C, Pham D, Morgan WH, Bass L, Cringle SJ, Yu DY. Mitochondrial cytochrome C oxidase expression in the central nervous system is elevated at sites of pressure gradient elevation but not absolute pressure increase. J Neurosci Res. 2009;87:2973–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Inv Ophthalmol Vis Sci. 1974;73:771–83.Google Scholar
  81. 81.
    Tso MO, Hayreh SS. Optic disk edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95:1458–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Hahnenberger RW. Inhibition of fast anterograde axoplasmic transport by a pressure barrier. The effect of pressure gradient and maximal pressure. Acta Physiol Scand. 1980;109:117–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Feola AJ, Coudrillier B, Mulvihill J, Geraldes DM, Vo NT, Albon J, Abel RL, Samuels BC, Ethier CR. Deformation of the lamina cribrosa and optic nerve due to changes in cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2017;58:2070–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Singh A. Extent of impaired axoplasmic transport and neurofilament compaction in traumatically injured axon at various strains and strain rates. Brain Inj. 2017;31:1387–95.PubMedCrossRefGoogle Scholar
  85. 85.
    Ahmed WW, Fodor E, Betz T. Active cell mechanics: measurement and theory. Biochim Biophys Acta. 2015;1853:3083–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Joanny JF, Prost J. Active gels as a description of the actin-myosin cytoskeleton. HFSP J. 2009;3:94–104.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sun D, Moore S, Jakobs TC. Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries. J Exp Med. 2017;214:1411–30.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lipowsky HH, Kovalsheck S, Zweifach B. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res. 1978;43:738–49.PubMedCrossRefGoogle Scholar
  89. 89.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressure. Microvasc Res. 1997;53:211–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Kang MH, Balaratnasingam C, Yu PK, Morgan WH, Mcallister IL, Cringle SJ, Yu DY. Morphometric characteristics of central retinal artery and vein endothelium in the normal human optic nerve head. Invest Ophthalmol Vis Sci. 2011;52:1359–67.PubMedCrossRefGoogle Scholar
  91. 91.
    The Eye Disease Case-Control Study Group. Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996;111:545–54.Google Scholar
  92. 92.
    Morgan WH, Hazelton ML, Azar SL, House PH, Yu DY, Cringle SJ, Balaratnasingam C. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology. 2004;111:1489–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Pillunat KR, Ventzke S, Spoerl E, Furashova O, Stodtmeister R, Pillunat LE. Central retinal venous pulsation pressure in different stages of primary open-angle glaucoma. Br J Ophthalmol. 2014;98:1374–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Radius RL. Anatomy of the optic nerve head and glaucomatous optic neuropathy. Surv Ophthalmol. 1987;32:35–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, Liebmann JM, Ritch R. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:8401–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Hernandez MR, Andrzejewska WM, Neufeld AH. Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol. 1990;1009:180–8.CrossRefGoogle Scholar
  97. 97.
    Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol. 1991;75:552–7.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Albon J, Purslow PP, Karwatowski WSS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–23.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2011;93:120–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;45:2660–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:7109–21.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sharpe GP, Danthurebandara VM, Vianna JR, Alotaibi N, Hutchison DM, Belliveau AC, Shuba LM, Nicolela MT, Chauhan BC. Optic disk hemorrhages and laminar disinsertions in glaucoma. Ophthalmology. 2016;123:1949–56.PubMedCrossRefGoogle Scholar
  103. 103.
    Fatehee N, Yu PK, Morgan WH, Cringle SJ, Yu DY. The impact of acutely elevated intraocular pressure on the porcine optic nerve head. Invest Ophthalmol Vis Sci. 2011;52:6192–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JKF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.PubMedCrossRefGoogle Scholar
  105. 105.
    Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res. 2007;85:312–22.PubMedCrossRefGoogle Scholar
  106. 106.
    Riva CE, Grunwald JE, Sinclair SH, Petrig BL. Blood velocity and volumetric flow rate in human retinal vessels. Inv Ophthalmol Vis Sci. 1985;26:1124–32.Google Scholar
  107. 107.
    Tielsh JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol. 1995;113:216–21.CrossRefGoogle Scholar
  108. 108.
    Abegao Pinto L, Willekens K, Van Keer K, Shibesh A, Molenberghs G, Vandewalle E, Stalmans I. Ocular blood flow in glaucoma - the Leuven eye study. Acta Ophthalmol. 2016;94(6):592–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149:704–12.PubMedCrossRefGoogle Scholar
  110. 110.
    Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92:e252–66.PubMedCrossRefGoogle Scholar
  111. 111.
    Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79–83.PubMedCrossRefGoogle Scholar
  112. 112.
    Drance SM, Begg IS. Sector haemorrhage--a probable acute ischaemic disk change in chronic simple glaucoma. Can J Ophthalmol. 1970;5:137–41.PubMedGoogle Scholar
  113. 113.
    Budenz DL, Anderson DR, Feuer WJ, Beiser JA, Schiffman J, Parrish RK, Piltz-Seymour JR, Gordon MO, Kass MA. Detection and prognostic significance of optic disk hemorrhages during the ocular hypertension treatment study. Ophthalmology. 2006;113:2137–43.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Medeiros FA, Alencar LM, Sample PA, Zangwill LM, Susanna R Jr, Weinreb RN. The relationship between intraocular pressure reduction and rates of progressive visual field loss in eyes with optic disk hemorrhage. Ophthalmology. 2010;117:2061–6.PubMedCrossRefGoogle Scholar
  115. 115.
    De Beaufort HC, De Moraes CG, Teng CC, Prata TS, Tello C, Ritch R, Liebmann JM. Recurrent disk hemorrhage does not increase the rate of visual field progression. Graefes Arch Clin Exp Ophthalmol. 2010;248:839–44.PubMedCrossRefGoogle Scholar
  116. 116.
    Park HY, Kim EK, Park CK. Clinical significance of the location of recurrent optic disk hemorrhage in glaucoma. Invest Ophthalmol Vis Sci. 2015;56:7524–34.PubMedCrossRefGoogle Scholar
  117. 117.
    Sonnsjo B, Dokmob Y, Krakau T. Disc haemorrhages, precursors of open angle glaucoma. Prog Retin Eye Res. 2002;21:35–56.PubMedCrossRefGoogle Scholar
  118. 118.
    An D, House P, Barry C, Turpin A, Mckendrick AM, Chauhan BC, Manners S, Graham SL, Yu DY, Morgan WH. The association between retinal vein pulsation pressure and optic disk haemorrhages in glaucoma. PLoS One. 2017;12:e0182316.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Liu B, Mcnally S, Kilpatrick JI, Jarvis SP, O’brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63:56–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Guo T, Sampathkumar S, Fan S, Morris N, Wang F, Toris CB. Aqueous humour dynamics and biometrics in the ageing Chinese eye. Br J Ophthalmol. 2017;101:1290–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthal Vis Sci. 2006;47:4254–61.PubMedCrossRefGoogle Scholar
  122. 122.
    Yip JLY, Foster PJ. Ethnic differences in primary angle-closure glaucoma. Curr Opin Ophthalmol. 2006;17:175–80.PubMedCrossRefGoogle Scholar
  123. 123.
    Green CM, Kearns LS, Wu J, Barbour JM, Wilkinson RM, Ring MA, Craig JE, Wong TL, Hewitt AW, Mackey DA. How significant is a family history of glaucoma? Experience from the glaucoma inheritance study in Tasmania. Clin Exp Ophthalmol. 2007;35:793–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Gemenetzi M, Yang Y, Lotery AJ. Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond). 2012;26:355–69.CrossRefGoogle Scholar
  125. 125.
    Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–70.PubMedCrossRefGoogle Scholar
  126. 126.
    Minegishi Y, Nakayama M, Iejima D, Kawase K, Iwata T. Significance of optineurin mutations in glaucoma and other diseases. Prog Retin Eye Res. 2016;55:149–81.PubMedCrossRefGoogle Scholar
  127. 127.
    Lewis CJ, Hedberg-Buenz A, Deluca AP, Stone EM, Alward WLM, Fingert JH. Primary congenital and developmental glaucomas. Hum Mol Genet. 2017;26:R28–36.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Grodum K, Heijl A, Bengtsson B. Risk of glaucoma in ocular hypertension with and without pseudoexfoliation. Ophthalmology. 2005;112:386–90.PubMedCrossRefGoogle Scholar
  129. 129.
    Schlotzer-Schrehardt U. Molecular pathology of pseudoexfoliation syndrome/glaucoma--new insights from LOXL1 gene associations. Exp Eye Res. 2009;88:776–85.PubMedCrossRefGoogle Scholar
  130. 130.
    Niyadurupola N, Broadway DC. Pigment dispersion syndrome and pigmentary glaucoma--a major review. Clin Exp Ophthalmol. 2008;36:868–82.PubMedCrossRefGoogle Scholar
  131. 131.
    Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, Nguyen HV, Aiello LM, Ferrara N, King GL. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Lovicu FJ, Mcavoy JW, De Iongh RU. Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:1204–18.CrossRefGoogle Scholar
  133. 133.
    Sihota R, Kumar S, Gupta V, Dada T, Kashyap S, Insan R, Srinivasan G. Early predictors of traumatic glaucoma after closed globe injury: trabecular pigmentation, widened angle recess, and higher baseline intraocular pressure. Arch Ophthalmol. 2008;126:921–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Razeghinejad MR, Myers JS, Katz LJ. Iatrogenic glaucoma secondary to medications. Am J Med. 2011;124:20–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49:1924–31.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Brooks AM, Gillies WE. Congenital rubella syndrome. Br J Ophthalmol. 1994;78:79.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Lions Eye Institute, Centre for Ophthalmology and Visual ScienceThe University of Western AustraliaNedlandsAustralia

Personalised recommendations