Fourier Analysis of Periodic Weakly Stationary Processes

  • Toru Maruyama
Part of the Monographs in Mathematical Economics book series (MOME, volume 2)


During the decade around 1930, the world economy was thrown into a serious depression that nobody had previously experienced.


  1. 1.
    Brémaud, P.: Fourier Analysis and Stochastic Processes. Springer, Cham (2014)CrossRefGoogle Scholar
  2. 2.
    Carleson, L.: On the convergence and growth of partial sums of fourier series. Acta Math. 116, 135–157 (1966)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Crum, M.M.: On positive definite functions. Proc. Lond. Math. Soc. 6, 548–560 (1956)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1953)zbMATHGoogle Scholar
  5. 5.
    Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988)Google Scholar
  6. 6.
    Frisch, R.: Propagation problems and inpulse problems in dynamic economics. In: Economic Essays in Honor of Gustav Cassel. Allen and Unwin, London (1933)Google Scholar
  7. 7.
    Granger, C.W.J., Newbold., P.: Forecasting Economic Time Series, 2nd edn. Academic, Orlando (1986)CrossRefGoogle Scholar
  8. 8.
    Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  9. 9.
    Hicks, J.R.: A Contribution to the Theory of the Trade Cycle. Oxford University Press, London (1950)Google Scholar
  10. 10.
    Itô, K.: Kakuritsu-ron (Probability Theory). Iwanami Shoten, Tokyo (1953) (Originally published in Japanese)Google Scholar
  11. 11.
    Kaldor, N.: A model of the trade cycle. Econ. J. 50, 78–92 (1940)CrossRefGoogle Scholar
  12. 12.
    Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics), I, II. Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese)Google Scholar
  13. 13.
    Kawata, T.: Fourier Henkan to Laplace Henkan (Fourier and Laplace Transforms). Iwanami Shoten, Tokyo (1957) (Originally published in Japanese)Google Scholar
  14. 14.
    Kawata, T.: On the Fourier series of a stationary stochastic process, I, II. Z. Wahrsch. Verw. Gebiete 6, 224–245 (1966); 13, 25–38 (1969)Google Scholar
  15. 15.
    Kawata, T.: Fourier Kaiseki (Fourier Analysis). Sangyo Tosho, Tokyo (1975) (Originally published in Japanese)Google Scholar
  16. 16.
    Kawata, T.: Fourier Kaiseki to Tokei (Fourier Analysis and Statistics). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese)Google Scholar
  17. 17.
    Kawata, T.: Teijyo Kakuritsu Katei (Stationary Stochastic Processes). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese)Google Scholar
  18. 18.
    Keynes, J.M.: The General Theory of Employment, Interest and Money. Macmillan, London (1936)Google Scholar
  19. 19.
    Loève, M.: Probability Theory, 3rd edn. van Nostrand, Princeton (1963)zbMATHGoogle Scholar
  20. 20.
    Maruyama, G.: Harmonic Analysis of Stationary Stochastic Processes. Mem. Fac. Sci. Kyushu Univ. Ser. A, 4, 45–106 (1949)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Maruyama, T.: Suri-keizaigaku no Hoho (Methods in Mathematical Economics). Sobunsha, Tokyo (1995) (Originally published in Japanese)Google Scholar
  22. 22.
    Maruyama, T.: Shinko Keizai Genron (Principles of Economics), 3rd edn. Iwanami Shoten, Tokyo (2013) (Originally published in Japanese)Google Scholar
  23. 23.
    Maruyama, T.: Fourier Analysis of Periodic Weakly Stationary Processes. A Note on Slutsky’s Observation. Adv. Math. Eco. 20, 151–180 (2016)zbMATHGoogle Scholar
  24. 24.
    Samuelson, P.A.: Interaction between the multiplier analysis and the principle of acceleration. Rev. Econ. Stud. 21, 75–78 (1939)Google Scholar
  25. 25.
    Samuelson, P.A.: A synthesis of the principle of acceleration and the multiplier. J. Polit. Econ. 47, 786–797 (1939)CrossRefGoogle Scholar
  26. 26.
    Sargent, T.J.: Macroeconomic Theory. Academic, New York (1979)zbMATHGoogle Scholar
  27. 27.
    Shinkai, Y.: Keizai-hendo no Riron (Theory of Economic Fluctuations). Iwanami Shoten, Tokyo (1967) (Originally published in Japanese)Google Scholar
  28. 28.
    Slutsky, E.: Alcune proposizioni sulla teoria delle funzioni aleatorie. Giorn. Inst. Ital. degli Attuari 8, 193–199 (1937)Google Scholar
  29. 29.
    Slutsky, E.: The summation of random causes as the source of cyclic processes. Econometrica 5, 105–146 (1937)CrossRefGoogle Scholar
  30. 30.
    Slutsky, E.: Sur les fonctions aléatoires presque-periodiques et sur la décomposition des fonctions aléatoires stationnaires en composantes. Actualités Sci. Ind. 738, 38–55 (1938)zbMATHGoogle Scholar
  31. 31.
    Wold, H.: A Study in the Analysis of Stationary Time Series, 2nd edn. Almquist and Wicksell, Uppsala (1953)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toru Maruyama
    • 1
  1. 1.Professor EmeritusKeio UniversityTokyoJapan

Personalised recommendations