Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard

  • S. Anand Kumar
  • Yeole Shivraj NarayanEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Additive Manufacturing is playing a major role in the manufacturing of parts by providing an alternative to the existing processes. However, strength of such 3D-printed parts using specific materials is still an area of current research. Polylactic acid, a biodegradable material, is one of the compatible materials in fused deposition modelling-based 3D printing process. Researchers have primarily focused on testing of PLA material as per ASTM D638 Type I standard. In this research ASTM D638 type IV specimens printed on FDM printer using PLA material are subjected to tensile testing and then compared relatively with the simulated results. Process involves preparation of ASTM specimens in Solidworks software followed by printing using PLA material in a Makerbot 3D printer, conditioning the printed specimens and then subjecting it to tensile testing in AutoGraph AG 15 universal testing machine. CAD model of the test specimens is then subjected to tensile loads in ANSYS software to obtain simulated tensile strength and maximum deformation.


Tensile testing Polylactic acid ASTM D638 Type IV 3D printing 


  1. 1.
    Ramya, A., Vanapalli, S.L.: 3D printing technologies in various applications. Int. J. Mech. Eng. Technol. 7(3), 396–409 (2016)Google Scholar
  2. 2.
    Dimitrov, D., van Wijck, W., Schreve, K., de Beer, N.: Investigating the achievable accuracy of three dimensional printing. Rapid Prototyp. J. 12(1), 42–52 (2006)CrossRefGoogle Scholar
  3. 3.
    Mcloughlin, L., Fryazinov, O., Moseley, M., Sanchez, M., Adzhiev, V., Comninos, P., et al.: Virtual sculpting and 3D printing for young people with disabilities. IEEE Comput. Graph. Appl. 36(1), 22–28 (2016)CrossRefGoogle Scholar
  4. 4.
    Joshi, S.C., Sheikh, A.A.: 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 10(4), 175–185 (2015)CrossRefGoogle Scholar
  5. 5.
    Shaffer, S., Yang, K., Vargas, J., Di Prima, M.A., Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 55(23), 5969–5979 (2014)CrossRefGoogle Scholar
  6. 6.
    Es-Said, O., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process. 15(1), 107–122 (2000)CrossRefGoogle Scholar
  7. 7.
    Hossain, M.S., et al.: Improving tensile mechanical properties of FDM-manufactured specimens via modifying build parameters. In: 24 Annual International Solid Freeform Fabrication Symposium, vol. 1, pp. 380–392. Austin (2013)Google Scholar
  8. 8.
    More, M.P.: 3D printing making the digital real. Int. J. Eng. Sci. Res. Technol. 2(7) (2013)Google Scholar
  9. 9.
    Casavola, C., Cazzato, A., Moramarco, V., Pappalettere, C.: Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016)CrossRefGoogle Scholar
  10. 10.
    Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015)CrossRefGoogle Scholar
  11. 11.
    Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014)CrossRefGoogle Scholar
  12. 12.
    Domingo, M., Puigriol, J.M., Garcia, A.A., Lluma, J., Borros, S., Reyes, G.: Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater. Des. 83, 670–677 (2015)Google Scholar
  13. 13.
    Ning, F., Cong, W., Hu, Y., Wang, H.: Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J. Compos. Mater. 51(4), 451–462 (2016)CrossRefGoogle Scholar
  14. 14.
    Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M.: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer. Rapid Prototyp. J. 21(5), 604–617 (2015)CrossRefGoogle Scholar
  15. 15.
    Ullu, E., Korkmaz, E., Yay, K., Ozdoganlar, O.B., Kara, L.B.: Enhancing the structural performance of additively manufactured objects through build orientation. J. Mech. Des. 137(11), 111410–111418 (2015)CrossRefGoogle Scholar
  16. 16.
    Fehri, S.M.K.: Thermal properties of plasticized poly (lactic acid) (PLA) containing nucleating agent. Int. J. Chem. Eng. Appl. 7(2), 85–88 (2016)CrossRefGoogle Scholar
  17. 17.
    Gordon, A.P.: An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp. J. 22(2), 387–404 (2016) Google Scholar
  18. 18.
    Letcher, T.: Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In: International Mechanical Engineering Congress and Exposition 2014, IMECE, vol. 2, pp. 1–8. Montreal (2014)Google Scholar
  19. 19.
    Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection (2017)Google Scholar
  20. 20.
    Eng, C.C.: Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int. J. Polym. Sci. 2014, 1–8 (2014)CrossRefGoogle Scholar
  21. 21.
    GiitaSilverajah, V.S., Ibrahim, N.A., Zainuddin, N., Yunus, W.M.Z.W., Hassan, H.A.: Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules 11729–11747 (2012)Google Scholar
  22. 22.
    ASTM Designation: D638—14 Standard Test Method for Tensile Properties of PlasticsGoogle Scholar
  23. 23.
    Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S.: Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. 9(5), 552–571 (2010)Google Scholar
  24. 24.
    Bijarimi, M., Ahmad, S., Rasid, R.: Mechanical, thermal and morphological properties of PLA/PP melt blends. In: International Conference on Agriculture, Chemical and Environmental Sciences 2012, ICACES, pp. 115–117. Dubai (2012)Google Scholar
  25. 25.
    Clarinval, A., Halleux, J.: Classification of biodegradable polymers. In: Smith, R. (ed.) Biodegradable Polymers for Industrial Applications, 1st edn. Taylor & Francis, Boca Raton, FL (2005)CrossRefGoogle Scholar
  26. 26.
    Ashby, M.F., Johnson, K.: Materials and Design: The Art and Science of Material Selection in Product Design, 3rd edn. Butterworth-Heinemann, Oxford, UK (2013)Google Scholar
  27. 27.
    Henton, D.E., Gruber, P., Lunt, J., Randall, J.: Polylactic acid technology. In: Mohanty, A., Misra, M., Drzal, L. (eds.) Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, Boca Raton, FL (2005)Google Scholar
  28. 28.
    Subhani, A.: Influence of the processes parameters on the properties of the polylactides based bio and eco-biomaterials. PhD thesis, National Polytechnic Institute of Toulouse (2011)Google Scholar
  29. 29.
    ASTM Designation: D618—13 Standard Practice for Conditioning Plastics for Testing Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.VNR Vignana Jyothi Institute of Engineering and TechnologyHyderabadIndia

Personalised recommendations