Smart System for Feature Recognition of Sheet Metal Parts: A Review

  • Sachin Salunkhe
  • Soham Teraiya
  • H. M. A. Hussein
  • Shailendra Kumar
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Sheet metal is one of the most frequently used primary manufacturing methods to produce different variety (shape and size) of components. The production of these sheet metal parts with a product (design) features is a major task in the sheet metal industries. Feature recognition is a primary activity for design of dies. Usually, this task is performed by experienced process planner in industries. The present review gives an overview of computer-aided smart system for feature recognition of sheet metal parts. The proposed system is capable to extract/recognize all design features of sheet metal parts automatically from 3D CAD model. The system has been implemented in AutoCAD using AutoLISP programming language.


Sheet metal Die design Feature recognition Stamping industries 


  1. 1.
    Hwang, B.C., Han, S.M., Bae, W.B., Kim, C.: Development of an automated progressive design system with multiple processes (piercing, bending, and deep drawing) for manufacturing products. Int. J. Adv. Manuf. Technol. 43, 644–653 (2009)CrossRefGoogle Scholar
  2. 2.
    Shah, J., Mantyla, M.: Parametric and Feature Based. CAD/CAM. Wiley, New Jersey (1995)Google Scholar
  3. 3.
    Wierda, L.S.: Linking design, process planning and cost information by feature-based modelling. J. Eng. Des. 2(1), 3–19 (1991)CrossRefGoogle Scholar
  4. 4.
    Srinivasakumar, S.M., Lin, L.: Ruled based automatic part feature extraction and recognition from CAD data. Comput. Ind. Eng. 22(1), 49–62 (1992)CrossRefGoogle Scholar
  5. 5.
    Cser, L., Geiger, M., Greska, W., Hoffmann, M.: Three kinds of case-based learning in sheet metal manufacturing. Comput. Ind. 17, 195–206 (1991)CrossRefGoogle Scholar
  6. 6.
    Nnaji, B., Kang, T., Yeh, S., Chen, J.: Feature reasoning for sheet metal components. Int. J. Prod. Res. 29(9), 1867–1896 (1991)CrossRefGoogle Scholar
  7. 7.
    Meeran, S., Pratt, M.J.: Automated feature recognition from 2D drawings. Comput. Aided Des. 25, 7–17 (1993)CrossRefGoogle Scholar
  8. 8.
    Lentz, D.H., Sowerby, R.: Feature extraction of concave and convex regions and their intersections. Comput. Aided Des. 25(7), 421–437 (1993)CrossRefGoogle Scholar
  9. 9.
    Streppel, A.H., Vin, L.J., Brinkman, J., Kals, H.J.J.: Suitability of sheet bending modelling techniques in CAPP applications. J. Mater. Process. Technol. 36, 339–356 (1993)CrossRefGoogle Scholar
  10. 10.
    Mantripragada, R., Kinzel, G., Altan, T.: A computer-aided engineering system for feature-based design of box-type sheet metal parts. J. Mater. Process. Technol. 57, 241–248 (1996)CrossRefGoogle Scholar
  11. 11.
    Jagirdar, R., Jain, V.K., Batra, J.L., Dhande, S.G.: Feature recognition methodology for shearing operations for sheet metal components. Comput. Integr. Manuf. Syst. 8(1), 51–62 (1995)CrossRefGoogle Scholar
  12. 12.
    Ceglarek, D.: Multivariate analysis and evaluation of adaptive sheet metal assembly system. Ann. ClRP 47(1), 17–22 (1998)CrossRefGoogle Scholar
  13. 13.
    Gao, J.X., Tang, Y.S., Sharma, R.: A feature model editor and process planning system for sheet metal products. J. Mater. Process. Technol. 107, 88–95 (2000)CrossRefGoogle Scholar
  14. 14.
    Xie, S.Q., Tu, Y.L., Zhou, Z.D.: An integrated CAD/CAPP/CAM system for compound sheet metal cutting and punching. In: Automated Systems Based on Human Skill, Aachen, Germany, pp. 49–54 (2000)Google Scholar
  15. 15.
    Wang, J., Wu, X., Thomson, P.F., Flitman, A.: A neural networks approach to investigating the geometrical influence on wrinkling in sheet metal forming. J. Mater. Process. Technol. 105, 215–220 (2000)CrossRefGoogle Scholar
  16. 16.
    Lutters, D., Brinke, E., Streppel, A.H., Kals, H.J.J.: Computer aided process planning for sheet metal based on information management. J. Mater. Process. Technol. 103, 120–127 (2000)CrossRefGoogle Scholar
  17. 17.
    Rigopoulos, A., Arkun, Y.: KLE-(V)AR: a new identification technique for reduced order disturbance models with application to sheet forming processes. J. Process Control 11, 679–698 (2001)CrossRefGoogle Scholar
  18. 18.
    Ge, M., Zhang, G.C., Du, R., Xu, Y.: Feature extraction from energy distribution of stamping processes using wavelet transform. J. Vibr. Control 8, 1023–1032 (2002)CrossRefGoogle Scholar
  19. 19.
    Shunmugam, M.S., Kannan, T.R.: Automatic flat pattern development of sheet metal components from orthographic projections. Int. J. Mach. Tools Manuf. 42, 1415–1425 (2002)CrossRefGoogle Scholar
  20. 20.
    Holland, P., Standring, P.M., Long, H., Mynors, D.J.: Feature extraction from STEP (ISO 10303) CAD drawing files for metal forming process selection in an integrated design system. J. Mater. Process. Technol. 125–126, 446–455 (2002)CrossRefGoogle Scholar
  21. 21.
    Pal, P., Tigga, A., Kumar, A.: Feature extraction from large CAD databases using genetic algorithm. Comput. Aided Des. 37, 545–558 (2005)CrossRefGoogle Scholar
  22. 22.
    Zhao, Z., Shah, J.J.: Domain independent shell for DFM and its application to sheet metal forming and injection molding. Comput. Aided Des. 37, 881–898 (2005)CrossRefGoogle Scholar
  23. 23.
    Ferreira, J., Vivian, D.: Feature recognition in axi-symmetrical parts modeled by solids in an Internet-oriented CAD/CAM system. J. Mater. Process. Technol. 179, 260–267 (2006)CrossRefGoogle Scholar
  24. 24.
    Ciurana, J., Ferrer, I., Gao, J.X.: Activity model and computer aided system for defining sheet metal process planning. J. Mater. Process. Technol. 173, 213–222 (2006)CrossRefGoogle Scholar
  25. 25.
    Huang, Z., Xie, B., Ma, L., Wei, X.: Feature conversion based on decomposition and combination of swept volumes. Comput. Aided Des. 38, 857–873 (2006)CrossRefGoogle Scholar
  26. 26.
    Cicek, A., Gulesin, M.: A part recognition based computer aided assembly system. Comput. Ind. 58, 733–746 (2007)CrossRefGoogle Scholar
  27. 27.
    Klingenberg, W., Boer, T.W.: Condition-based maintenance in punching/blanking of sheet metal. Int. J. Mach. Tools Manuf. 48, 589–598 (2008)CrossRefGoogle Scholar
  28. 28.
    Zhang, C., Zhou, X., Li, C.: Automatic recognition of intersecting features of freeform sheet metal parts. J. Zhejiang Univ. Sci. 10, 1439–1449 (2009)CrossRefGoogle Scholar
  29. 29.
    Kannan, T., Shunmugam, M.: Processing of 3D sheet metal components in STEP AP-203 format. Part I: feature recognition system. Int. J. Prod. Res. 47, 941–964 (2009)CrossRefGoogle Scholar
  30. 30.
    Oh, K.S., Oh, K.H., Janga, J.H., Kim, D.J., Han, K.S.: Design and analysis of new test method for evaluation of sheet metal formability. J. Mater. Process. Technol. 211, 695–707 (2011)CrossRefGoogle Scholar
  31. 31.
    Gupta, R., Gurumoorthy, B.: Automatic extraction of free-form surface features (FFSFs). Comput. Aided Des. 44, 99–112 (2012)CrossRefGoogle Scholar
  32. 32.
    Behera, A.K., Lauwers, B., Duflou, J.R.: Advanced feature detection algorithms for incrementally formed sheet metal parts. Trans. Nonferr. Metals Soc. China 22, 315–322 (2012)CrossRefGoogle Scholar
  33. 33.
    Hussein, H.M.A., Mousa, H.M.: Computer aided feature recognition in free form parts. Green Des. Mater. Manuf. Processes 239–244 (2013)Google Scholar
  34. 34.
    Gupta, R.K., Sreenu, P., Bernard, A., Laroche, F.: Process information model for sheet metal operations. In: 11th International Conference on Product Lifecycle Management, Yokohama, Japan (2014)Google Scholar
  35. 35.
    Khan, A.A., Hussein, H.M.A., Emad, A., Ahmari, A.: Computer-aided process planning in prismatic shape die components based on standard for the exchange of product model data. Adv. Mech. Eng. 7(11), 1–11 (2015)CrossRefGoogle Scholar
  36. 36.
    Neugebauer, R., Werner, M., Pröhl, M., Brunnett, G., Kühnert, T.: New feature extraction and processing methods for the advanced knowledge based process planning of forming operations. Procedia CIRP 28, 16–21 (2015)CrossRefGoogle Scholar
  37. 37.
    Pishyar, E., Emadi, M.: Investigation of different algorithms for surface defects of steel sheet for quality. Int. J. Comput. Appl. 149(6), 33–37 (2016)Google Scholar
  38. 38.
    Khan, A.A., Emad, A., Hussein, H.M.A., Ahmari, A.: An automatic feature extraction technique for 2D punch shapes. Int. J. Comput. Electr. Autom. Control Inf. Eng. 10(5), 884–888 (2016)Google Scholar
  39. 39.
    Tao, J., Chen, Z., Yu, S., Liu, Z.: Integration of life cycle assessment with computer-aided product development by a feature-based approach. J. Clean. Prod. 143, 1144–1164 (2017)CrossRefGoogle Scholar
  40. 40.
    Eriyeti, M., Mpofu, K., Trimble, J., Gwangwava, N.: Model for developing a feature recognition system for a reconfigurable bending press machine. Procedia CIRP 63, 533–538 (2017)CrossRefGoogle Scholar
  41. 41.
    Ubhayaratne, I., Pereira, M.P., Xiang, Y., Rolfe, B.F.: Audio signal analysis for tool wear monitoring in sheet metal stamping. Mech. Syst. Signal Process. 85, 809–826 (2017)CrossRefGoogle Scholar
  42. 42.
    Greska, W., Franke, V., Geiger, M.: Classification problems in manufacturing of sheet metal parts. Comput. Ind. 33, 17–30 (1997)CrossRefGoogle Scholar
  43. 43.
    Ismail, N., Abu Bakar, N., Juri, A.: Recognition of cylindrical and conical features using edge boundary classification. Int. J. Mach. Tools Manuf 45, 649–655 (2005)CrossRefGoogle Scholar
  44. 44.
    Zhou, X., Qiu, Y., Hua, G., Wang, H., Ruan, X.: A feasible approach to the integration of CAD and CAPP. Comput. Aided Des. 39, 324–338 (2007)CrossRefGoogle Scholar
  45. 45.
    Sunil, V., Pande, S.: Automatic recognition of features from freeform surface CAD models. Comput. Aided Des. 40, 502–517 (2008)CrossRefGoogle Scholar
  46. 46.
    Hussein, S., Aseel, J.: STEP-based assembly feature recognition using attribute adjacency graph for prismatic parts. Eng. Tech. J. 31, 1929–1948 (2013)Google Scholar
  47. 47.
    Jones, T.J., Reidsema, C., Smith, A.: Automated feature recognition system for supporting conceptual engineering design. Int. J. Knowl. Based Intell. Eng. Syst. 10(6), 477–492 (2016)CrossRefGoogle Scholar
  48. 48.
    Zeid, I.: CAD/CAM Theory and Practices. Tata McGraw-Hill Inc., Singapore (1991)Google Scholar
  49. 49.
    Babic, B.: Development of an intelligent CAD-CAPP interface. In: Proceedings of the International Conference on Intelligent Technologies in Human-Related Sciences, pp. 351–357 (1996)Google Scholar
  50. 50.
    Farsi, M., Arezoo, B.: Feature recognition and design advisory system for sheet metal components. In: 5th International Advanced Technologies Symposium Karabuk, Turkey, pp. 1–5 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sachin Salunkhe
    • 1
  • Soham Teraiya
    • 2
  • H. M. A. Hussein
    • 3
  • Shailendra Kumar
    • 4
  1. 1.Department of Mechanical EngineeringVel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and TechnologyAvadi, ChennaiIndia
  2. 2.Department of Mechanical EngineeringDr. S. & S. S. Ghandhy College of Engineering and TechnologySuratIndia
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringHelwan UniversityCairoEgypt
  4. 4.Department of Mechanical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations