Experimental Investigation on Tensile and Fracture Behaviour of Glass Fibre-Reinforced Nanoclay/Mg–Al LDH-Based Fibre Metal Laminates

  • K. Logesh
  • V. K. Bupesh Raja
  • M. Venkatasudhahar
  • Hitesh Kumar Rana
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Nano-sized particulate materials have been influencing their effect in the modern world. In this paper, morphological conduct is been decided by using the sandwich sheets of fibre-metal laminates (FMLs) containing nanoclay Cloisite 30B and Mg–Al layered double hydro-oxide (Mg–Al LDH). Atomic force microscope (AFM) is been utilized to discover the harshness of the nano-particles. Here, the tensile test for 3, 4 and 5 wt% of layered double hydroxide (LDH)/nanoclay added FML sheets was analysed. The EDAX is employed to discover the real structure of the chosen nano-powders along the identification of the chemical composition of the nanofiller. It results that the sandwich sheet with nanoclay had smooth surface for a similar molecule measure than the LDH. The fractured surface is analysed by scanning electron microscopy (SEM) hence indicates ductile nature of fracture for modified epoxy and reinforced with glass fibre metal. Henceforth, nanoclay and LDH-based FMLs can be decided on applications in automotive applications.


Tensile test Fibre-metal laminates (FML) Nanoclay (Closite-30B) LDH (Mg–Al) Atomic force microscope (AFM) Scanning electron microscopy (SEM) 


  1. 1.
    Logesh, K., Bupesh Raja, V.K.: Evaluation of mechanical properties of Mg-Al layered double hydroxide as a filler in epoxy-based FML composites, pp.1–19. Int. J. Adv. Manuf. Technol. (2018).
  2. 2.
    Logesh, K., Bupesh Raja, V.K., Sasidhar, P.: An experiment about morphological structure of Mg-Al layered double hydroxide using field emission scanning electron microscopy with EDAX analysis. Int. J. ChemTech Res. 8(3), 1104–1108 (2015). ISSN: 0974-4290Google Scholar
  3. 3.
    Becker, C.M., Gabbardo, A.D., Wypych, F., Amico, S.C.: Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites. Compos. A 42, 196–202 (2011)CrossRefGoogle Scholar
  4. 4.
    Klemkaite, K., Prosycevas, I., Taraskevicius, R., Khinsky, A., Kareiva, A.: Synthesis and characterization of layered double hydroxides with different cations (Mg Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structures. Cent. Eur. J. Chem. 9(2), 275–282 (2011)CrossRefGoogle Scholar
  5. 5.
    Gabr, M.H., Okumura, W., Ueda, H., Kuriyama, W., Uzawa, K., Kimpara, I.: Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. B 69, 94–100 (2015)CrossRefGoogle Scholar
  6. 6.
    da Costa, E.F.R., Skordos, A.A., Partridge, I.K., Rezai, A.: RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos. A. Appl. Sci. Manuf. 43(4), 593–602 (Apr 2012)Google Scholar
  7. 7.
    Becker, C.M., Dick, T.A., Wypych, F., Schrekker, H.S., Amico, S.C.: Synergetic effect of LDH and glass fiber on the properties of two- and three-component epoxy composites. Polym. Test. 31, 741–747 (2012)CrossRefGoogle Scholar
  8. 8.
    Wang, K., Chen, L., Kotaki, M., He, C.: Preparation, microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites. Compos. A 38, 192–197 (2007)CrossRefGoogle Scholar
  9. 9.
    Hossen, Md.F., Hamdan, S., Rahman, Md.R., Islam, Md.S., Liew, F.K., Lai, J.C., Rahman, Md.M.: Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fiber/polyethylene/nanoclay nanocomposites. Measurement 90, 404–411 (2016)CrossRefGoogle Scholar
  10. 10.
    Li, M., Gu, Y., Liu, Y., Li, Y., Zhang, Z.: Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013)CrossRefGoogle Scholar
  11. 11.
    Bogner, A., Jouneau, P.H., Thollet, G., Basset, D., Gauthier, C.: A History of Scanning Electron Microscopy Developments: Towards ‘‘wet-STEM’’ Imaging, vol. 38, p. 391. Elsevier Ltd (2007)Google Scholar
  12. 12.
    Ramesh, M., Palanikumar, K., Hemachandra Reddy, K.: Evaluation of mechanical and interfacial properties of sisal/jute/glass hybrid fiber reinforced polymer composites. Trans. Indian Inst. Met. Scholar
  13. 13.
    Costa, F.R., Wagenknecht, U., Heinrich, G.: LDPE/MgeAl layered double hydroxide nanocomposite: thermal and flammability properties. Polym. Degrad. Stab. 92, 1813–1823 (2007)CrossRefGoogle Scholar
  14. 14.
    Wypych, F., Satyanarayana, K.G.: Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties. J. Colloid Interface Sci. 285, 532–543 (2005)CrossRefGoogle Scholar
  15. 15.
    Hu, P.-Y., Hsieh, Y.-H., Chen, J.-C., Chang, C.-Y.: Characteristics of manganese-coated sand using SEM and EDAX analysis. J. Colloid Interface Sci. 272(2), 308–313 (2004)CrossRefGoogle Scholar
  16. 16.
    Deva Kumar, M.L.S., Drakshayani, S., Vijaya Kumar Reddy, K.: Effect of fuel injection pressure on performance of single cylinder diesel engine at different intake manifold inclinations. Int. J. Eng. Innov. Technol. (IJEIT) 2(4) (Oct 2012). ISSN: 2277-3754Google Scholar
  17. 17.
    Zhang, H., Gn, S.W., An, J., Xiang, Y., Yang, J.L.: Impact behaviour of GLAREs with MWCNT modified epoxy resins. Exp. Mech. 54, 83–93 (2014)CrossRefGoogle Scholar
  18. 18.
    Lokhande, C.D., Sankapal, B.R., Mane, R.S., Pathan, H.M., Muller, M., Giersig, M., Ganesan, V.: XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Appl. Surf. Sci. 193(1–4), 1–10 (2002)CrossRefGoogle Scholar
  19. 19.
    Jezerska, L., Zajonc, O., Rozbroj, J., Vyletělek, J., Zegzulka, J.: Research on effect of spruce sawdust with added starch on flowability and pelletization of the material. IERI Procedia 8, 154–163 (2014)CrossRefGoogle Scholar
  20. 20.
    Logesh, K., Bupesh Raja, V.K.: Formability analysis for enhancing forming parameters in AA8011/PP/AA1100 sandwich materials. Int. J. Adv. Manuf. Technol. 93(1-4), 113–120 (2017)CrossRefGoogle Scholar
  21. 21.
    Ramesh, M., Nijanthan, S.: Mechanical property analysis of kenaf–glass fibre reinforced polymer composites using finite element analysis. Bull. Mater. Sci. 39(1), 147–157 (2016)CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Canche, N.G., Flores-Johnson, E.A., Cortes, P., Carrillo, J.G.: Evaluation of surface treatments on 5052-H32 aluminum alloy for enhancing the interfacial adhesion of thermoplastic-based fiber metal laminates. Int. J. Adhes. Adhes. (2018). Scholar
  23. 23.
    Majzoobi, G.H., Morshedi, H., Farhadi, K.: The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs. Thin-Walled Struct. 122, 1–7 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Automobile EngineeringSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations