Studies on Carbon Materials-Based Antenna for Space Applications

  • Prasanna Ram
  • Manoj Aravind Sankar
  • N. G. Renganathan
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Printing small antenna structures for space application would be highly challenging, and the materials to be used for the antenna fabrication would have major impact on the performance of the antenna system. Antennas are primely fabricated using copper as the material. In recent times, various materials are being explored for their applicability, reliability, durability, and scalability with respect to antenna applications. In lieu of the high thermal conductivity of copper, which could lead to thermal expansion on exposure to sun’s rays and thus decrease its efficacy as an antenna; graphene has been a better competitor and contender for space antennas. Taking cost of synthesis and capital investment into consideration, this paper aims to give a face-lift to the other allotropic forms of carbon, namely graphite, lampblack, and activated charcoal, which are comparatively far cheaper and extensively available and could be on a par with graphene as far as antenna application is concerned.


Carbon allotropes Antenna application Packaging factor Electron avalanche Internal resistance 



The authors would like to acknowledge Dr. Gowthaman Swaminathan—Director R&D, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology; Dr. Radhakrishnan Narayanaswamy—Vel Tech TBI Biowaste Management Laboratory; and Dr. C. Ramesh Kumar—Organic Chemistry Laboratory, for extending their research facilities for prototyping and calibrations.


  1. 1.
    Straw, R.D., Severns, R., Beezley, B., Hare, E.: ARRL Antenna Handbook, 18th edn. The American Radio Relay League, Inc., Newington, CT (1998)Google Scholar
  2. 2.
    Llatser, I., et al.: Graphene-based nano-patch antenna for terahertz radiation. Photon Nanostruct: Fundam. Appl. (2012). Scholar
  3. 3.
    Singh, G., Rajni, Marwaha, A.: A review of metamaterials and its applications. Int. J. Eng. Trends Technol. 19(6), 305–310 (2015)CrossRefGoogle Scholar
  4. 4.
    Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T., Kong, J.A.: A study of using metamaterials as antenna substrate to enhance gain. Prog. Electromagn. Res. 51, 295–328 (2005)CrossRefGoogle Scholar
  5. 5.
    Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)CrossRefGoogle Scholar
  6. 6.
    Hao, J., Hanson, G.W.: Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotechnol. 5(6), 766–775 (2006)CrossRefGoogle Scholar
  7. 7.
    Song, Lingnan, Myers, Amanda C., Adams, Jacob J., Zhu, Yong: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6, 4248–4253 (2014)CrossRefGoogle Scholar
  8. 8.
    Nikitin, P.V., Lam, S., Rao, K.V.S.: Low cost silver ink RFID tag antennas. In: 2005 IEEE Antennas and Propagation Society International Symposium, IEEE Antennas and Propagation Society International Symposium Digest, vol. 4B, pp. 353–356. IEEE, Washington DC (2005)Google Scholar
  9. 9.
    Boan, B.J., Schwam, M.: Mesh-configured RF antenna formed of Knit graphite fibers. United States Patent, Appl. No.: 46,144, 5 May 1987, Patent Number: 4,812,854, 14 Mar 1989Google Scholar
  10. 10.
    Chen, X., Grzegorczyk, T.M., Wu, B.-I., Pacheco, J., Jr., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70(1), 016608-1–016608-7 (2004)Google Scholar
  11. 11.
    Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  12. 12.
    Yilmaz, Turker, Akan, Ozgur B.: On the use of low terahertz band for 5G indoor mobile networks. Comput. Electr. Eng. 48, 164–173 (2015)CrossRefGoogle Scholar
  13. 13.
    Nassar, I.T., Weller, T.: An electrically-small, 3-D cube antenna fabricated with additive manufacturing. In: 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), IEEE Radio and Wireless Week 2013, pp. 58–60. IEEE, Austin, Texas, USA (2013)Google Scholar
  14. 14.
    Nate, K.A., Hester, J., Isakov, M., Bahr, R., Tentzeris, M.M.: A fully printed multilayer aperture-coupled patch antenna using hybrid 3D/inkjet additive manufacturing technique. In: Proceedings of the 45th European Microwave Conference, 2015 European Microwave Conference (EuMC), 2015 European IEEE, Paris, France (2015)Google Scholar
  15. 15.
    Akbari, M., Khan, M.W.A., Hasani, M., Björninen, T., Sydänheimo, L., Ukkonen, L.: Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags. IEEE Antennas Wirel. Propag. Lett. 15, 1569–1572 (2015)CrossRefGoogle Scholar
  16. 16.
    Paredes, J.I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRefGoogle Scholar
  17. 17.
    Makeup and Beauty Home. Last accessed 2018/01/31
  18. 18.
    Health vit. Last accessed 2018/01/29
  19. 19.
    Shaker, G., Safavi-Naeini, S., Sangary, N., Tentzeris, M.M.: Inkjet printing of ultra-wideband (UWB) antennas on paper-based substrates. IEEE Antennas Wirel. Propag. Lett. 10, 111–114 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhu, H., Narakathu, B.B., Fang, Z., Aijazi, A.T., Joyce, M., Atashbar, M., Hu, L.: A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6, 9110–9115 (2014)CrossRefGoogle Scholar
  21. 21.
    Brennan, P.J., Fedor, C., Pausch, G.: Sunlight, UV, & accelerated weathering. Kunststoffe - German Plastics 78(4), 323–327 (1988)Google Scholar
  22. 22.
    Wikipedia. Last accessed 2018/02/05
  23. 23.
    Pottasch, S.R.: The lower solar corona: interpretation of the ultraviolet spectrum. Astrophys. J. 137, 945–966 (1963)CrossRefGoogle Scholar
  24. 24.
    Godbout, S., Guimont, H., Marquis, A., De Foy, C.: A comparison of halogen and incandescent infrared lamps for piglets. Can. Biosys. Eng. 45, 5.15–5.19 (2003)Google Scholar
  25. 25.
    Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21(5), 836–850 (1953)CrossRefGoogle Scholar
  26. 26.
    Arora, R.C.: Refrigeration and Air Conditioning. PHI Learning Private Limited, New Delhi (2010)Google Scholar
  27. 27.
    Explainthatstuff. Last accessed 2018/01/27
  28. 28.
    Howstuffworks. Last accessed 2018/01/28
  29. 29.
    Chennai Metco. Last accessed 2018/01/02
  30. 30.
    MITOPENCOURSEWARE. Last accessed 2018/01/30

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyAvadi, ChennaiIndia

Personalised recommendations