Advertisement

Experimental Determination of Fluid Flow Parameters to Study Permeation Process Inside a Porous Channel

  • Hussain NajmiEmail author
  • Eddy El-Tabach
  • Nicolas Gascoin
  • Khaled Chetehouna
  • François Falempin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Porous channels are actively used in the field of transpiration cooling and fuel cell applications. Therefore, it is important to study the fluid flow inside the porous channel and different factors affecting it. In this study, fluid flow analysis is performed using four different gases such as nitrogen, carbon dioxide, methane, and helium. The effects of different inlet flowrates and feed pressures are investigated on the fluid properties. It is found that the viscous sublayer thickness is not the only parameter which governs the permeation inside the porous stainless steel tube. There are also some more parameters which should be taken into account while studying the permeation in a porous tube in addition to the boundary layer. These parameters are the velocity of the main flow, Vz (i.e., axial flow), momentum in the main flow, Mz (i.e., in axial direction), momentum in radial direction, My, density, ρ, and viscosity, µ.

Keywords

Permeation Regenerative cooling Separation process Fuel cell Porous tube 

References

  1. 1.
    Najmi, H., El-Tabach, E., Gascoin, N., Chetehouna, K., Lamoot, L.: Falempin, F: Fluid flow analysis to describe the permeation process along the length of the porous tube. Int. J. Hydrogen Energy 42, 25531–25543 (2017)CrossRefGoogle Scholar
  2. 2.
    Wang, M., Lawal, A., Stephenson, P., Sidders, J.: Ramshaw, C: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011)CrossRefGoogle Scholar
  3. 3.
    Pangrle, B., Alexandrou, N., Dixon, G., Dibiasio, D.: An analysis of laminar fluid flow in porous tube and shell systems. Chem. Eng. Sci. 46, 2847–2855 (1991)CrossRefGoogle Scholar
  4. 4.
    Gascoin, N., Fau, G., Gillard, P., Kuhn, M., Bouchez, M., Steelant, J.: Comparison of two permeation test benches and of two determination methods for Darcy’s and Forchheimer’s permeabilities. J. Porous Media 15, 705–720 (2012)CrossRefGoogle Scholar
  5. 5.
    Gascoin, N.: High temperature and pressure reactive flows through porous media. Int. J. Multiph. Flow 37, 24–35 (2011)CrossRefGoogle Scholar
  6. 6.
    Najmi, H., El-Tabach, E., Chetehouna, K., Gascoin, N., Akridiss, S., Falempin, F.: Flow Configuration Influence on Darcian and Forchheimer Permeabilities Determination. Springer Lecture Notes Mech. Eng. ‘IDAD’, pp. 87–94 (2017)Google Scholar
  7. 7.
    Najmi, H., El-Tabach, E., Chetehouna, K., Gascoin, N., Falempin, F.: Effect of flow configuration on Darcian and Forchheimer permeabilities determination in a porous composite tube. Int. J. Hydrogen Energy 41, 316–323 (2015)CrossRefGoogle Scholar
  8. 8.
    Barreiro, M., Maroño, M., Sánchez, J.: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2 and H2/H2O/CO2 mixtures. Int. J. Hydrogen Energy 39, 4710–4716 (2014)CrossRefGoogle Scholar
  9. 9.
    Miyajima, K., Eda, T., Nair, B., Iwamoto, Y.: Organic–inorganic layered membrane for selective hydrogen permeation together with dehydration. J. Memb. Sci. 421, 124–130 (2012)CrossRefGoogle Scholar
  10. 10.
    Chen, W., Hsu, P.: Hydrogen permeation measurements of Pd and Pd-Cu membranes using dynamic pressure difference method. Int. J. Hydrogen Energy 36, 9355–9366 (2011)CrossRefGoogle Scholar
  11. 11.
    Shamsabadi, A., Kargari, A., Babaheidari, M., Laki, S., Ajami, H.: Role of critical concentration of PEI in NMP solutions on gas permeation characteristics of PEI gas. J. Ind. Eng. Chem. 19, 677–685 (2013)CrossRefGoogle Scholar
  12. 12.
    Chi, Y., Yen, P., Jeng, M., Ko, S., Lee, T.: Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int. J. Hydrogen Energy 35, 6303–6310 (2010)CrossRefGoogle Scholar
  13. 13.
    Chen, W., Chi, I.: Transient dynamic of hydrogen permeation through a palladium membrane. Int. J. Hydrogen Energy 34, 2440–2448 (2009)CrossRefGoogle Scholar
  14. 14.
    Najmi, H., El-Tabach, E., Gascoin, N., Chetehouna, K., Lamoot L., Falempin, F.: Permselectivity bench to study permation along porous tube. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China (2017)Google Scholar
  15. 15.
    Poling, B., Prausnitz, J., O’Connell, S.: The properties of gases and liquids. McGraw-Hill Prof (2001). ISBN-13: 063-9785322160Google Scholar
  16. 16.
    Arakeri, J.: Bernoulli’s equation, Resonance. 5, 54–71 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hussain Najmi
    • 1
    Email author
  • Eddy El-Tabach
    • 2
  • Nicolas Gascoin
    • 1
  • Khaled Chetehouna
    • 1
  • François Falempin
    • 3
  1. 1.INSA-CVLUniversity of OrléansBourgesFrance
  2. 2.University of Orléans, IUT BourgesBourgesFrance
  3. 3.MBDALe Plessis-Robinson CedexFrance

Personalised recommendations