Advertisement

Numerical Modeling and Study of Vaporization of Single Droplet and Mono-dispersed Spray Under Mixed Convection Conditions

  • Sumer Dirbude
  • Abhijit Kushari
  • Vinayak Eswaran
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

An approach to account for combined convection during droplet evaporation and study of pure component droplets and mono-dispersed sprays is presented. The classical gas-phase and infinite conductivity liquid-phase model are extended, with the use of an effective Reynolds number, to conflate the combined effects of forced and natural convection. The current model, after validation with experimental and numerical data using an independent code, is incorporated into a commercial CFD software, ANSYS Fluent, via user-defined functions with the Eulerian–Lagrangian numerical scheme. A validation study is carried out by comparing with available experimental, numerical, and analytical data on pure component droplets and a mono-dispersed spray, respectively, for without and with droplet dynamics. The results are shown in terms of mass fraction, droplet velocity, droplet diameter square, and droplet temperature. The validation shows reasonably good match between the present numerical data and experimental and analytical data, respectively, for initial Red/Grd 0.09, 2.12, and 60 evaporating droplets/sprays. It is concluded that the biofuels, for example, ethanol with a lower latent heat of vaporization, burn much like mono-component droplets and the blowing effect can be important in their modeling in the spray combustion.

Keywords

Droplet evaporation Evaporation models Numerical simulations 

References

  1. 1.
    Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, G., Agarwal, S.K., Jackson, T.A., Switzer, G.L.: Experimental study of pure and multi-component fuel droplet evaporation in a heated air flow. At. Sprays 7, 317–337 (1997)CrossRefGoogle Scholar
  3. 3.
    Miller, R.S., Harstad, K., Bellan, H.J.: Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas–liquid flow simulations. Int. J. Multiph. Flow 24, 1025–1055 (1998)CrossRefGoogle Scholar
  4. 4.
    Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays, 2nd edn. Cambridge University Press (2010)Google Scholar
  5. 5.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)Google Scholar
  6. 6.
    Downing, C.G.: The evaporation of drops of pure liquids at elevated temperatures, rates of evaporation and wet-bulb temperature. AIChE J. 12(4), 760–766 (1966)CrossRefGoogle Scholar
  7. 7.
    Faeth, G.M., Lazar, R.S.: Fuel droplet burning rates in a combustion gas environment. AIAA J. 9, 2165–2171 (1971)CrossRefGoogle Scholar
  8. 8.
    Froessling, N.: Ueber die Verdunstungfallender Tropfen. Gerlands Beitraege. Geophys. 52, 170–216 (1938)Google Scholar
  9. 9.
    Ranz, W.E., Marshall, W.R. Jr.: Evaporation from drops (Part I and II). Chem. Eng. Progress 48(3), 141–146, 172–180 (1952)Google Scholar
  10. 10.
    Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)CrossRefGoogle Scholar
  11. 11.
    Chiang, C.H., Raju, M.S., Sirignano, W.A.: Numerical analysis of convecting, vaporizing fuel droplet with variable properties. Int. J. Heat Mass Transf. 35, 1307–1324 (1992)CrossRefGoogle Scholar
  12. 12.
    Haywood, R.J., Nafziger, N., Renksizbulut, M.: A detailed examination of gas and liquid phase transient processes in convective droplet evaporation. ASME J. Heat Transf. 111, 495–502 (1989)CrossRefGoogle Scholar
  13. 13.
    Kolaitis, D.I., Founti, M.A.: A comparative study of numerical models for Eulerian–Lagrangian simulations of turbulent evaporating sprays. Int. J. Heat Mass Transf. 27, 424–435 (2006)Google Scholar
  14. 14.
    Gollahalli, S.R.: Buoyancy effects on the flame structure in the wakes of burning liquid drops. Combust. Flame 29, 21–31 (1977)CrossRefGoogle Scholar
  15. 15.
    Morin, C., Chauveau, C., Gökalp, I.: Droplet vaporization characteristics of vegetable oil derived bio-fuels at high temperatures. Exp. Thermal Fluid Sci. 21, 41–50 (2000)CrossRefGoogle Scholar
  16. 16.
    Birouk, M., Toth, S.L.: Vaporization and combustion of a soybean biodiesel droplet in a turbulent environment at elevated ambient pressure. Combust. Sci. Technol. 187(6), 937–952 (2015)CrossRefGoogle Scholar
  17. 17.
    Daho, T., Vaitilingom, G., Sanogo, O., Ouiminga, S.K., Segda, B.G., Valette, J., Higelin, P., Koulidiati, J.: A model for predicting evaporation characteristics of vegetable oil droplets based on their fatty acid composition. Int. J. Heat Mass Transf. 55(11–12), 2864–2871 (2012)CrossRefGoogle Scholar
  18. 18.
    Shintre, P., Raghavan, V.: Experimental investigations of burning rates of pure ethanol and ethanol blended fuels. Combust. Flame 156, 997–1005 (2009)CrossRefGoogle Scholar
  19. 19.
    Dirbude, S., Eswaran, V., Kushari, A.: Droplet vaporization modelling of rapeseed and sunflower methyl esters. Fuel 92(1), 171–179 (2012)CrossRefGoogle Scholar
  20. 20.
    Law, C.K., Williams, F.A.: Kinetics and convection in the combustion of alkane droplets. Combust. Flame 19, 393–405 (1972)CrossRefGoogle Scholar
  21. 21.
    Wong, S.C., Lin, A.R.: Internal temperature distributions of droplets vaporizing in high temperature convective flows. J. Fluid Mech. 237(11), 671–687 (1992)CrossRefGoogle Scholar
  22. 22.
    Lefebvre, A.: Atomization and Sprays. Taylor and Francis, NY (1989)Google Scholar
  23. 23.
    Boileau, M.: Simulation numérique de la combustion diphasique. WN/CFD/03/73, July (2003)Google Scholar
  24. 24.
    ANSYS-Fluent UDF, Release 13.0 Manual (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sumer Dirbude
    • 1
  • Abhijit Kushari
    • 2
  • Vinayak Eswaran
    • 3
  1. 1.Department of Mechanical EngineeringNational Institute of Technology DelhiDelhiIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of Technology KanpurKanpurIndia
  3. 3.Department of Mechanical and Aerospace EngineeringIndian Institute of Technology-HyderabadKandiIndia

Personalised recommendations