Advertisement

Performance Augmentation of Boron–HTPB-Based Solid Fuels by Energetic Additives for Hybrid Gas Generator in Ducted Rocket Applications

  • Syed Alay Hashim
  • Sanket Kangle
  • Srinibas KarmakarEmail author
  • Arnab Roy
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Experimental investigations were conducted using an opposed flow burner system (OFBS) to examine the combustion characteristics of boron–HTPB-based solid fuels with nano-energetic metal additives such as magnesium and titanium. The study has been mainly on regression rate characteristics and effects of additives on combustion behavior of B–HTPB-based solid fuels for hybrid gas generator in solid fuel ducted rocket (SFDR) applications. In the OFBS, gaseous oxygen (GOX) has been impinged on the solid fuel surface at mass flux range (Gox) of 20–57 kg/m2 s for various concentrations of solid fuel samples. Magnesium addition to the boron–HTPB mixture has been found to help in increasing the regression rate by 12.5% compared to only boron-loaded case at 57 Gox. However, similar result has not been noticed for titanium case. A high-speed camera is used to visualize the burning surface and the ejected burning agglomerates of the solid fuels. Standard material characterization techniques such as FE-SEM, XRD, EDS, and TGA are used for characterizing feed particles as well as condensed combustion products (CCP) of various samples studied in this investigation.

Keywords

Boron nanoparticles (nB) HTPB Metal additives (nMg/nTi) OFBS Hybrid gas generator SFDR 

Notes

Acknowledgements

The authors are grateful to the Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, for providing support for establishing the experimental setup. Some of the equipment used in this study were supported by the Institute’s seed grant given to the author ‘SK’ (Grant number: IIT/SRIC/ISIRD/2013-2014, Dt. 21-02-2014).

References

  1. 1.
    Komornik, D., Gany, A.: Study of a hybrid gas generator for a ducted rocket. Combust. Explos. Shock Waves 53(3), 293–297 (2017)CrossRefGoogle Scholar
  2. 2.
    Leingang, J.L., Petters, D.P.: Ducted rockets. In: Jensen, G.E., Netzer, D.W. (eds.) Progress in Astronautic and Aeronautic, Tactical Missile Propulsion, vol. 170, pp. 447–468 (1996)Google Scholar
  3. 3.
    Miyayama, T., Oshima, H., Toshiyuki, S., Odawara, T., Tanabe, M., Kuwahara, T.: Improving combustion of boron particles in secondary combustor of ducted rockets. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, California, USA (2006)Google Scholar
  4. 4.
    Yeh, C.L., Kuo, K.K.: Ignition and combustion of boron particles. Prog. Energy Combust. Sci. 22(6), 511–541 (1996)CrossRefGoogle Scholar
  5. 5.
    Macek, A., Sample, J.M.: Combustion of boron particles at atmospheric pressure. Combust. Sci. Technol. 1(3), 181–191 (1969)CrossRefGoogle Scholar
  6. 6.
    King, M.K.: Ignition and combustion of boron particles and clouds. J. Spacecr. Rockets 19(4), 294–306 (1982)CrossRefGoogle Scholar
  7. 7.
    Fink, L.E.: Chronological History of SFRJ Flight Tests. Engineering Technology Boeing Aerospace Company (1981)Google Scholar
  8. 8.
    Natan, B., Gany, A.: Combustion characteristics of a boron fueled solid fuel ramjet with aft-burner. J. Propul. Power 9(5), 694–701 (1993)CrossRefGoogle Scholar
  9. 9.
    Balas, S., Natan, B.: Boron oxide condensation in a hydrocarbon-boron gel fuel ramjet. J. Propul. Power 32(4), 967–974 (2016)CrossRefGoogle Scholar
  10. 10.
    Young, G., Roberts, C.W., Stoltz, C.A.: Ignition and combustion enhancement of boron with polytetrafluoroethylene. J. Propul. Power 31(1), 386–392 (2015)CrossRefGoogle Scholar
  11. 11.
    Kuo, K.K., Risha, G.A., Evans, B.J., Boyer, E.: Potential usage of energetic nano-sized powders for combustion and rocket propulsion. In: Proceeding of Materials Research Society, vol. 800 (2003)Google Scholar
  12. 12.
    Young, G., Sullivan, K., Zachariah, M.R., Yu, K.: Combustion characteristics of boron nanoparticles. Combust. Flame 156(2), 322–333 (2009)CrossRefGoogle Scholar
  13. 13.
    Korchagin, M.A., Grigor’eva, T.F., Bokhonov. B.B., Sharafutdinov, M.R., Barinova, A.P., Lyakhov, N.Z.: Solid-state combustion in mechanically activated SHS systems. I: Effect of activation time on process parameters and combustion product composition. Combust. Explos. Shock Waves 39(1), 43–50 (2003)Google Scholar
  14. 14.
    Rogachev, A.S., Mukasyan, A.S.: Combustion of heterogeneous nanostructural systems. Combust. Explos. Shock Waves 46(3), 243–266 (2010)CrossRefGoogle Scholar
  15. 15.
    Hashim, S.A., Lahariya, M., Karmakar, S., Roy, A.: Calculation of theoretical performance of boron-based composite solid propellant for the future applications. In: 2nd Innovative Design and Development Practices in Aerospace and Automotive Engineering Conference (International), Springer, New Delhi, pp. 327–335 (2016)Google Scholar
  16. 16.
    Weismiller, M.R., Huba, Z.J., Tuttle, S.G., Epshteyn, A., Fisher, B.T.: Combustion characteristics of high energy Ti–Al–B nanopowders in a decane spray flame. Combust. Flame 176, 361–369 (2017)CrossRefGoogle Scholar
  17. 17.
    Zolotko, A.N., Matsko, A.M., Polishchuk, D.I., Buinovskii, S.N., Gaponenko, L.A.: Ignition of a two-component gas suspension of metal particles. Combust. Explos. Shock Waves 16(1), 20–23 (1980)CrossRefGoogle Scholar
  18. 18.
    Chiaverini, M.J., Harting, G.C., Lu, Y.C., Kuo, K.K., Peretz, A., Jones, H.S., Wygle, B.S., Arves, J.P.: Pyrolysis behavior of hybrid-rocket solid fuels under rapid heating conditions. J. Propul. Power 15(6), 888–895 (1999)CrossRefGoogle Scholar
  19. 19.
    Radhakrishnan, T.S., Rama Rao, M.: Thermal decomposition of polybutadienes by pyrolysis gas chromatography. J. Polym. Sci. Polym. Chem. 19(12), 3197–3208 (1981)CrossRefGoogle Scholar
  20. 20.
    Beck, W.H.: Pyrolysis studies of polymeric materials used as binders in composite propellants: A review. Combust. Flame 70(2), 171–190 (1987)CrossRefGoogle Scholar
  21. 21.
    Sun, X., Tian, H., Li, Y., Yu, N., Cai, G.: Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor. Acta Astronaut. 119, 137–146 (2016)CrossRefGoogle Scholar
  22. 22.
    Hashim, S.A., Kangle, S., Karmakar, S., Roy, A.: Combustion characteristics of boron-HTPB based solid fuels for hybrid rocket applications. In: 7th Theoretical, Applied, Computational and Experimental Mechanics Conference (International), Chennai, India (2017)Google Scholar
  23. 23.
    Schlichting, H., Gersten, K.: Boundary-layer theory, 9th edn. Springer, Germany (2017)zbMATHCrossRefGoogle Scholar
  24. 24.
    T’ien, J.S., Singhal, S.N., Harrold, D.P., Prahl, J.M.: Combustion and extinction in the stagnation-point boundary layer of a condensed fuel. Combust. Flame 33, 55–68 (1978)CrossRefGoogle Scholar
  25. 25.
    Krishnamurthy, L., Williams, F.A.: A flame sheet in the stagnation-point boundary layer of a condensed fuel. Acta Astronaut. 1, 711–736 (1974)CrossRefGoogle Scholar
  26. 26.
    Nakoryakov, V.E., Pokusaev, B.G., Troyan, E.N.: Impingement of an axisymmetric liquid jet on a barrier. Int. J. Heat Mass Transf. 21(9), 1175–1184 (1978)CrossRefGoogle Scholar
  27. 27.
    Glauert, M.B.: The wall jet. J. Fluid Mech. 1(6), 625–643 (1956)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Watson, E.J.: The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20(3), 481–499 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Shark, S.C., Zaseck, C.R., Pourpoint, T.L., Son, S.F.: Solid-fuel regression rates and flame characteristics in an opposed flow burner. J. Propul. Power 30(6), 1675–1682 (2014)CrossRefGoogle Scholar
  30. 30.
    Liu, J.Z., Xi, J.F., Yang, W.J., Hu, Y.R., Zhang, Y.W., Wang, Y., Zhou, J.H.: Effect of magnesium on the burning characteristics of boron particles. Acta Astronaut. 96, 89–96 (2014)CrossRefGoogle Scholar
  31. 31.
    Chaturvedi, S., Dave, P.N.: Solid propellants: AP/HTPB composite propellants. Arab. J. Chem., 1–8 (2015)Google Scholar
  32. 32.
    Beckstead, M.W.: A summary of aluminum combustion. Paper Presented at the RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion, vol. 32, no. 6, pp. 2107–2114 (2002)Google Scholar
  33. 33.
    King, M.K.: Aluminum combustion in a solid rocket motor environment. Proc. Combust. Inst. 32(2), 2107–2114 (2009)CrossRefGoogle Scholar
  34. 34.
    Sandall, E., Kalman, J., Quigley, J.N., Munro, S., Hedman, T.D.: A study of solid ramjet fuel containing boron–magnesium mixtures. Propuls. Power Res. 6(4), 243–252 (2017)CrossRefGoogle Scholar
  35. 35.
    Hashim, S.A., Karmakar, S., Roy, A., Srivastava, S.K.: Regression rates and burning characteristics of boron-loaded paraffin-wax solid fuels in ducted rocket applications. Combust. Flame 191, 287–297 (2018)CrossRefGoogle Scholar
  36. 36.
    Liu, D., Xia, Z., Huang, L., Hu, J.: Boron particle combustion in solid rocket ramjet. J. Aerosp. Eng. 28(4), 04014112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Syed Alay Hashim
    • 1
  • Sanket Kangle
    • 1
  • Srinibas Karmakar
    • 1
    Email author
  • Arnab Roy
    • 1
  1. 1.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations