Advertisement

Polymer/Carbon Composites for Sensor Application

  • Subhendu Bhandari
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Carbon containing fillers are widely used in the preparation of polymer composites. Incorporation of fillers with higher electrical conductivity in insulating polymeric matrices imparts significant change of electrical resistivity/conductivity of the composites. Moreover, the changes of electrical properties may also be caused by external triggering actions such as changes of temperature, mechanical strain, concentration of specific gases or vapours etc. Conductivity of the carbonaceous filler, that of the resulting composite as well as their distribution and relative alignment play significant role in the dependence characteristics of electrical properties on such external stimulus. Reversibility of such responsive behaviour opens up potential applicability of such composites in specific sensor applications.

Keywords

Carbon black Carbon nanotube Gas sensor Graphene Fullerene Strain sensor Temperature sensor 

References

  1. 1.
    Pramanik S, Das G, Karak N (2013) Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Adv 3:4574–4581CrossRefGoogle Scholar
  2. 2.
    Al-Mashat L, Debiemme-Chouvy C, Borensztajn S, Wlodarski W (2012) Electropolymerized polypyrrole nanowires for hydrogen gas sensing. J Phys Chem C 116:13388–13394CrossRefGoogle Scholar
  3. 3.
    Hossain ME, Freund MS, Jayas DS, White NDG, Shafai C, Thomson DJ (2012) Carbon black polymer sensor array for incipient grain spoilage monitoring. Agric Res 1:87–94CrossRefGoogle Scholar
  4. 4.
    Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators B Chem 178:485–493CrossRefGoogle Scholar
  5. 5.
    Chekanov Y, Ohnogi R, Asai S, Sumita M (1998) Positive temperature coefficient effect of epoxy resin filled with short carbon fibers. Polym J 30:381–387CrossRefGoogle Scholar
  6. 6.
    Yasin M, Tauqeer T, Rahman HU, Karimov KS, San SE, Tunc AV (2015) Polymer-fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arab J Sci Eng 40:257–262CrossRefGoogle Scholar
  7. 7.
    Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li X-G, Kalantar-zadeh K, Hoek EMV, Wang KL, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11:954–959CrossRefGoogle Scholar
  8. 8.
    Obitayo W, Liu TA (2012) Review: carbon nanotube-based piezoresistive strain sensors. J Sens 2012:652438/1–652438/15Google Scholar
  9. 9.
    Laird ED, Li CY (2013) Structure and morphology control in crystalline polymer-carbon nanotube nanocomposites. Macromolecules 46:2877–2891CrossRefGoogle Scholar
  10. 10.
    Parmar K, Mahmoodi M, Park C, Park SS (2013) Effect of CNT alignment on the strain sensing capability of carbon nanotube composites. Smart Mater Struct 22:075006/1–075006/12CrossRefGoogle Scholar
  11. 11.
    Nan CW, Shen Y, Ma J (2010) Physical properties of composites near percolation. Ann Rev Mater Res 40:131–151CrossRefGoogle Scholar
  12. 12.
    Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687CrossRefGoogle Scholar
  13. 13.
    Bartolomeo AD, Sarno M, Giubileo F, Altavilla C, Iemmo L, Piano S, Bobba F, Longobardi M, Scarfato A, Sannino D, Cucolo AM, Ciambelli P (2009) Multiwalled carbon nanotube films as small-sized temperature sensors. J Appl Phys 105:064518/1–064518/6Google Scholar
  14. 14.
    Kong D, Le LT, Li Y, Zunino JL, Lee W (2012) Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28:13467–13472CrossRefGoogle Scholar
  15. 15.
    Zhuge F, Hu B, He C, Zhou X, Liu Z, Li R (2011) Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49:3796–3802CrossRefGoogle Scholar
  16. 16.
    Sahoo S, Barik SK, Sharma GL, Khurana G, Scott JF, Katiyar RS (2012) Reduced graphene oxide as ultra fast temperature sensor. arXiv:1204.1928v1 [cond-mat.mes-hall]
  17. 17.
    Matzeu G, Pucci A, Savi S, Romanelli M, Di Francesco F (2012) A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens Actuators A Phys 178:94–99CrossRefGoogle Scholar
  18. 18.
    Oskouyi AB, Sundararaj U, Mertiny P (2014) Effect of temperature on electrical resistivity of carbon nanotubes and graphene nanoplatelets nanocomposites. J Nanotechnol Eng Med 5:044501/1–044501/6CrossRefGoogle Scholar
  19. 19.
    Hou YH, Zhang MQ, Rong MZ (2003) Carbon black-filled polyolefins as positive temperature coefficient materials: the effect of in situ grafting during melt compounding. J Polym Sci B Polym Phys 41:127–134CrossRefGoogle Scholar
  20. 20.
    He XJ, Du JH, Ying Z, Cheng HM (2005) Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl Phys Lett 86:062112/1–062112/3CrossRefGoogle Scholar
  21. 21.
    He L, Tjong S-C (2014) Electrical behavior and positive temperature coefficient effect of graphene/polyvinylidene fluoride composites containing silver nanowires. Nanoscale Res Lett 9:375/1–375/8CrossRefGoogle Scholar
  22. 22.
    Karimov KS, Chani MTS, Khalid FA (2011) Carbon nanotubes film based temperature sensors. Phys E 43:1701–1703CrossRefGoogle Scholar
  23. 23.
    Sibinski M, Jakubowska M, Sloma M (2010) Flexible temperature sensors on fibers. Sensors 10:7934–7946CrossRefGoogle Scholar
  24. 24.
    Hong SW, Kim DY, Lee JU, Jo WH (2009) Synthesis of polymeric temperature sensor based on photophysical property of fullerene and thermal sensitivity of poly(N-isopropylacrylamide). Macromolecules 42:2756–2761CrossRefGoogle Scholar
  25. 25.
    Calisi N, Giuliani A, Alderighi M, Schnorr JM, Swager TM, Francesco FD, Pucci A (2013) Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites. Eur Polym J 49:1471–1478CrossRefGoogle Scholar
  26. 26.
    Giuliani A, Placidi M, Francesco FD, Pucci A (2014) A new polystyrene-based ionomer/MWCNT nanocomposite for wearable skin temperature sensors. React Funct Polym 76:57–62CrossRefGoogle Scholar
  27. 27.
    Lin L, Deng H, Gao X, Zhang S, Bilotti E, Peijs T, Fu Q (2013) Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polym Int 62:134–140CrossRefGoogle Scholar
  28. 28.
    Window AL (1992) Strain gauge technology. Springer, BerlinGoogle Scholar
  29. 29.
    Anand SV, Mahapatra DR (2009) Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films. Smart Mater Struct 18:045013/1–045013/13CrossRefGoogle Scholar
  30. 30.
    Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989CrossRefGoogle Scholar
  31. 31.
    Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4:157–166CrossRefGoogle Scholar
  32. 32.
    Zhao J, Dai K, Liu C, Zheng G, Wang B, Liu C, Chen J, Shen C (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos A Appl Sci Manuf 48:129–136CrossRefGoogle Scholar
  33. 33.
    Ferrreira A, Rocha J, Ansón-Casaos A, Martínez M, Vaz F, Lanceros-Mendez S (2012) Electromechanical performance of poly (vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sens Actuators A Phys 178:10–16CrossRefGoogle Scholar
  34. 34.
    Ferreira A, Martínez M, Ansón-Casaos A, Gómez-Pineda L, Vaz F, Lanceros-Mendez S (2013) Relationship between electromechanical response and percolation threshold in carbon nanotube/poly (vinylidene fluoride) composites. Carbon 61:568–576CrossRefGoogle Scholar
  35. 35.
    Lin L, Liu S, Zhang Q, Li X, Ji M, Deng H, Fu Q (2013) Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl Mater Interfaces 5:5815–5824CrossRefGoogle Scholar
  36. 36.
    Li J, Zhao S, Zeng X, Huang W, Gong Z, Zhang G, Sun R, Wong C-P (2016) Highly stretchable and sensitive strain sensor based on facilely prepared three-dimensional graphene foam composite. ACS Appl Mater Interfaces 8:18954–18961CrossRefGoogle Scholar
  37. 37.
    Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737–748CrossRefGoogle Scholar
  38. 38.
    Chen J, Du X-C, Zhang W-B, Yang J-H, Zhang N, Huang T, Wang Y (2013) Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos Sci Technol 81:1–8CrossRefGoogle Scholar
  39. 39.
    Ma P-C, Liu M-Y, Zhang H, Wang S-Q, Wang R, Wang K, Wong Y-K, Tang B-Z, Hong S-H, Paik K-W (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090–1096CrossRefGoogle Scholar
  40. 40.
    Socher R, Krause B, Hermasch S, Wursche R, Pötschke P (2011) Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos Sci Technol 71:1053–1059CrossRefGoogle Scholar
  41. 41.
    Ke K, Pötschke P, Wiegand N, Krause B, Voit B (2016) Tuning the network structure in poly (vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: towards improvements of conductivity and piezoresistive sensitivity. ACS Appl Mater Interfaces 8:14190–14199CrossRefGoogle Scholar
  42. 42.
    Tuukkanen S, Hoikkanen M, Poikelispää M, Honkanen M, Vuorinen T, Kakkonen M, Vuorinen J, Lupo D (2014) Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substrates. Synth Met 191:28–35CrossRefGoogle Scholar
  43. 43.
    Jang H, Yoon H, Ko Y, Choi J, Lee S-S, Jeon I, Kim J-H, Kim H (2016) Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties. Nanoscale 8:5667–5675CrossRefGoogle Scholar
  44. 44.
    Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2012) One-pot synthesis of conducting graphene-polymer composites and their strain sensing application. Nanoscale 4:1258–1262CrossRefGoogle Scholar
  45. 45.
    Li X, Levy C, Elaadil L (2008) Multiwalled carbon nanotube film for strain sensing. Nanotechnology 19:045501/1–045501/8CrossRefGoogle Scholar
  46. 46.
    Dinh TN, Steitz J, Bu L, Kanoun O (2009) Influence of the composition of MWCNTs layers on the properties of strain gauges. In: Proceedings of the 9th IEEE Conference on Nanotechnology, Genoa, Italy, 26–30:477–480Google Scholar
  47. 47.
    Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible carbon Nanotube films for high performance strain sensors. Sensors 14(6):10042–10071CrossRefGoogle Scholar
  48. 48.
    Loh KJ, Lynch JP, Shim BS, Kotov NA (2008) Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct 19:747–764CrossRefGoogle Scholar
  49. 49.
    Loh KJ, Kim J, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429–438CrossRefGoogle Scholar
  50. 50.
    Pham GT, Park Y-B, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B Eng 39:209–216CrossRefGoogle Scholar
  51. 51.
    Ku-Herrera JJ, Avilés F (2012) Cyclic tension and compression piezoresistivity of carbon nanotube/vinylester composites in the elastic and plastic regimes. Carbon 50:2592–2598CrossRefGoogle Scholar
  52. 52.
    Slobodian P, Riha P, Saha P (2012) A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon 50:3446–3453CrossRefGoogle Scholar
  53. 53.
    Yin G, Hu N, Karube Y, Liu Y, Li Y, Fukunaga H (2011) A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. J Compos Mater 45:1315–1323CrossRefGoogle Scholar
  54. 54.
    Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotubes/polymer composite films. Nanotechnology 19:055705/1–055705/7CrossRefGoogle Scholar
  55. 55.
    Hu N, Itoi T, Akagi T, Kojima T, Xue J, Yan C, Atobe S, Fukunaga S, Yuan W, Ning H, Surina, Liu Y, Alamusi (2013) Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites. Carbon 51:202–212CrossRefGoogle Scholar
  56. 56.
    Oliva-Avilés AI, Avilés F, Sosa V (2011) Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49:2989–2997CrossRefGoogle Scholar
  57. 57.
    Christie S, Scorsone E, Persaud K, Kvasnik F (2003) Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens Actuators B Chem 90:163–169CrossRefGoogle Scholar
  58. 58.
    Bendahan M, Lauque P, Lambert-Mauriat C, Carchano H, Seguin JL (2002) Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing. Sens Actuators B Chem 84:6–11CrossRefGoogle Scholar
  59. 59.
    Duy LT, Kim D-J, Trung TQ, Dang VQ, Kim B-Y, Moon HK, Lee N-E (2015) High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv Funct Mater 25:883–890CrossRefGoogle Scholar
  60. 60.
    ACGIH (2005) In 2005 TLVs and BEIs based on the document of the threshold limit values for chemical substances and physical agents & biological exposure indices. American Conference of Governmental Industrial Hygienists (ACGIH): Cincinnati, Ohio pp 8–29Google Scholar
  61. 61.
    Berber MR, Hafez IH (eds) (2016) Carbon nanotubes—current progress of their polymer composites. In Tech, p 460Google Scholar
  62. 62.
    Yun J, Im JS, Kim H-I, Lee Y-S (2012) Effect of oxyfluorination on gas sensing behavior of polyaniline-coated multi-walled carbon nanotubes. Appl Surf Sci 258:3462–3468CrossRefGoogle Scholar
  63. 63.
    Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353CrossRefGoogle Scholar
  64. 64.
    Loffredo F, Del Mauro ADG, Burrasca G, Ferrara VL, Quercia L, Massera E, Francia GD, Della Sala D (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators B Chem 143:421–429CrossRefGoogle Scholar
  65. 65.
    Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128:1412–1413CrossRefGoogle Scholar
  66. 66.
    Xie H, Wu J, Huang P, Ji X, Hunag Y (2006) The study of the gas microsensors based on polymer-carbon black composites. In: 2006 8th international conference on solid-state and integrated circuit technology proceedings, Shanghai, pp 637–639Google Scholar
  67. 67.
    Hernández-López S, Vigueras-Santiago E, Mora MM, Mancill JRF, Contreras EAZ (2013) Cellulose-based polymer composite with carbon black for tetrahydrofuran sensing. Int J Polym Sci 2013:381653/1–381653/7CrossRefGoogle Scholar
  68. 68.
    Holmes MA, Mackay ME, Giunta RK (2007) Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors. J Nanopart Res 9:753–763CrossRefGoogle Scholar
  69. 69.
    Pede D, Smela E, Johansson T, Johansson M, Inganäs O (1998) A general-purpose conjugated-polymer device array for imaging. Adv Mater 10:233–237CrossRefGoogle Scholar
  70. 70.
    Dai L, Soundarrajan P, Kim T (2002) Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl Chem 74:1753–1772CrossRefGoogle Scholar
  71. 71.
    Zheng J, Ma X, He X, Gao M, Li G (2012) Preparation, characterizations, and its potential applications of PANi/ graphene oxide nanocomposite. Procedia Eng 27:1478–1487CrossRefGoogle Scholar
  72. 72.
    Jang WK, Yun J, Kim H-I, Lee Y-S (2012) Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites. Carbon Lett 13:88–93CrossRefGoogle Scholar
  73. 73.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  74. 74.
    Lu J, Kumar B, Castro M, Feller J-F (2009) Vapour sensing with conductive polymer nanocomposites (CPC): polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer. Sens Actuators B Chem 140:451–460CrossRefGoogle Scholar
  75. 75.
    Kobashi K, Villmow T, Andres T, Pötschke P (2008) Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens Actuators B Chem 134:787–795CrossRefGoogle Scholar
  76. 76.
    Salavagione H, Díez-Pascual AM, Lázaro E, Vera S, Gómez-Fatou MA (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328CrossRefGoogle Scholar
  77. 77.
    Philip B, Abraham JK, Chandrasekhar A, Varadan VK (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12:935–939CrossRefGoogle Scholar
  78. 78.
    Some S, Xu Y, Kim Y, Yoon Y, Qin H, Kulkarni A, Kim T, Lee H (2013) Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci Rep 3:1868/1–1868/8Google Scholar
  79. 79.
    Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T. Wongchoosuk C (2014) Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Org Electron 15:2971–2981CrossRefGoogle Scholar
  80. 80.
    Yang Y, Li S, Yang W, Yuan W, Xu J, Jiang Y (2014) In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interfaces 6:13807–13814CrossRefGoogle Scholar
  81. 81.
    Chen SG, Hu JW, Zhang MQ, Rong MZ (2005) Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites. Sens Actuators B Chem 105:187–193CrossRefGoogle Scholar
  82. 82.
    Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High Sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166/1–166/5Google Scholar
  83. 83.
    Yang G, Lee C, Kim J (2013) Three-dimensional graphene network-based chemical sensors on paper substrate. J Electrochem Soc 160:B160–B163CrossRefGoogle Scholar
  84. 84.
    Wu J, Yu CH, Li SZ, Zou BH, Liu YY, Zhu XQ, Guo YY, Xu HB, Zhang WN, Zhang LP, Liu B, Tian DB, Huang W, Sheetz MP, Huo FW (2015) Parallel near-field photolithography with metal-coated elastomeric masks. Langmuir 31:1210–1217CrossRefGoogle Scholar
  85. 85.
    Wu J, Tao K, Miao JM, Norford L (2015) Improved selectivity and sensitivity of gas sensing using 3D reduced graphene oxide hydrogel with integrated microheater. ACS Appl Mater Interfaces 7:7502–7510Google Scholar
  86. 86.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306CrossRefGoogle Scholar
  87. 87.
    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426–5434CrossRefGoogle Scholar
  88. 88.
    Lipatov A, Varezhnikov A, Augustin M, Bruns M, Sommer M, Sysoev V, Kolmakov A, Sinitskii A (2014) Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing. Appl Phys Lett 104:013114/1–013114/5Google Scholar
  89. 89.
    Han J-W, Kim B, Li J, Meyyappan M (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116:22094–22097CrossRefGoogle Scholar
  90. 90.
    Iwaki T, Covington JA, Udrea F, Gardner JW (2009) Identification and quantification of different vapours using a single polymer chemoresistor and the novel dual transient temperature modulation technique. Sens Actuators B 141:370–380CrossRefGoogle Scholar
  91. 91.
    Homer ML, Lim JR, Manatt K, Kisor A, Lara L, Jewell AD, Shevade A, Yen S-PS, Zhou H, Ryan MA (2003) Using temperature effects on polymer-composite sensor arrays to identify analytes. Sensors, P IEEE 1:144–147Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Plastic and Polymer EngineeringMaharashtra Institute of TechnologyAurangabadIndia

Personalised recommendations