Advertisement

Structural/Load-Bearing Characteristics of Polymer–Carbon Composites

  • Madhab Bera
  • Pragya Gupta
  • Pradip K. Maji
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In the last few years carbon-containing polymer composites have drawn significant attention due to their light weight, high thermal stability, excellent mechanical, and electrical property. Important characteristics of carbon-based materials (CBMs) like high specific surface area and high strength have made them as very good reinforcing filler for a wide range of polymers. The foremost aspiration of this chapter is to establish a relationship between the structures and load-bearing performance of carbon-containing polymer composites. Structural diversities of CBMs such as carbon black, carbon fiber, carbon nanofiber, diamond, nanodiamond, graphite, carbon nanotubes (CNTs), and graphene are reflected in the differential load-bearing characteristics of their polymer composites. The chapter also provides state-of-the-art information regarding the potential applications of polymer/carbon composites.

Keywords

Graphene Carbon nanotubes (CNTs) Fullerene Graphite Carbon fiber Load-bearing characteristics 

Notes

Acknowledgements

The authors gratefully acknowledge the unconditional support of every member of Advanced Materials Research Laboratory (AMRL), IIT Roorkee to give proper shape of this book chapter.

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  3. 3.
    Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15(7):1193–1196CrossRefGoogle Scholar
  4. 4.
    Mohajeri A, Omidvar A (2015) Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells–a DFT study. Phys Chem Chem Phys 17(34):22367–22376CrossRefGoogle Scholar
  5. 5.
    Wang G, Xing W, Zhuo S (2012) The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochim Acta 66:151–157CrossRefGoogle Scholar
  6. 6.
    Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Rodriquez D, Sawyer EJ, Lipomi DJ (2015) Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energ Environ Sci 8(1):55–80CrossRefGoogle Scholar
  7. 7.
    Beal RM, Stavrinadis A, Warner JH, Smith JM, Assender HE, Watt AA (2010) The molecular structure of polymer−fullerene composite solar cells and its influence on device performance. Macromolecules 43(5):2343–2348CrossRefGoogle Scholar
  8. 8.
    Lin HY, Li CH, Wang DY, Chen CC (2016) Chemical doping of a core–shell silicon nanoparticles@ polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode. Nanoscale 8(3):1280–1287CrossRefGoogle Scholar
  9. 9.
    Zhang X, Samorì P (2017) Graphene/polymer nanocomposites for supercapacitors. ChemNanoMat 3(6):362–372CrossRefGoogle Scholar
  10. 10.
    Wang X, Zhao J, Chen M, Ma L, Zhao X, Dang ZM, Wang Z (2013) Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect. J Phys Chem B 117(5):1467–1474CrossRefGoogle Scholar
  11. 11.
    Ghassemieh E (2011) Materials in automotive application, state of the art and prospects. In: New trends and developments in automotive industry. InTechGoogle Scholar
  12. 12.
    Zhang W, Joshi A, Wang Z, Kane RS, Koratkar N (2007) Creep mitigation in composites using carbon nanotube additives. Nanotechnology 18(18):185703CrossRefGoogle Scholar
  13. 13.
    Piggott M (2002) Load bearing fibre composites. Springer Science & Business Media, BerlinGoogle Scholar
  14. 14.
    Schrand AM, Huang H, Carlson C, Schlager JJ, Ōsawa E, Hussain SM, Dai L (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7CrossRefGoogle Scholar
  15. 15.
    Sun Y, Yang Q, Wang H (2016) Synthesis and characterization of nanodiamond reinforced chitosan for bone tissue engineering. J Funct Biomater 7(3):27CrossRefGoogle Scholar
  16. 16.
    Ochiai T, Tago S, Hayashi M, Hirota K, Kondo T, Satomura K, Fujishima A (2016) Boron-doped diamond powder (BDDP)-based polymer composites for dental treatment using flexible pinpoint electrolysis unit. Electrochem Commun 68:49–53CrossRefGoogle Scholar
  17. 17.
    Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRefGoogle Scholar
  18. 18.
    Li L, Li J, Lukehart CM (2008) Graphitic carbon nanofiber-poly (acrylate) polymer brushes as gas sensors. Sens Actuators B Chem 130(2):783–788CrossRefGoogle Scholar
  19. 19.
    Shuai C, Feng P, Gao C, Shuai X, Xiao T, Peng S (2015) Graphene oxide reinforced poly (vinyl alcohol): nanocomposite scaffolds for tissue engineering applications. RSC Adv 5(32):25416–25423CrossRefGoogle Scholar
  20. 20.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47(9):888–897CrossRefGoogle Scholar
  21. 21.
    Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R et al (2010). Synthesis, characterization, and multilayer assembly of pH sensitive graphene−polymer nanocomposites. Langmuir 26(12):10068–10075CrossRefGoogle Scholar
  22. 22.
    Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331CrossRefGoogle Scholar
  23. 23.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  24. 24.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  25. 25.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  26. 26.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670CrossRefGoogle Scholar
  27. 27.
    Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon lett 11(4):279–284CrossRefGoogle Scholar
  28. 28.
    Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37CrossRefGoogle Scholar
  29. 29.
    Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites. In: Carbon nanotubes-Polymer nanocomposites. IntechGoogle Scholar
  30. 30.
    Rao CNR, Voggu R, Govindaraj A (2009) Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale 1(1):96–105CrossRefGoogle Scholar
  31. 31.
    Kausar A (2017) Advances in polymer/fullerene nanocomposite: a review on essential features and applications. Polym Plast Technol Eng 56(6):594–605CrossRefGoogle Scholar
  32. 32.
    Eight Allotropes of Carbon Michael Ströck—Created by Michael Ströck. Licensed under CC BY-SA 3.0 via Wikimedia CommonsGoogle Scholar
  33. 33.
    Jabeen S, Kausar A, Muhammad B, Gul S, Farooq M (2015) A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng 54(13):1379–1409CrossRefGoogle Scholar
  34. 34.
    Fu SY, Lauke B, Mäder E, Hu X, Yue CY (1999) Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing. J Mater Process Technol 89:501–507CrossRefGoogle Scholar
  35. 35.
    Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A Appl Sci Manuf 42(12):2126–2142CrossRefGoogle Scholar
  36. 36.
    Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945CrossRefGoogle Scholar
  37. 37.
    ASTM D1510-99, Standard test method for carbon black-iodine adsorption numberGoogle Scholar
  38. 38.
    Mather PJ, Thomas KM (1997) Carbon black/high density polyethylene conducting composite materials: part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite. J Mater Sci 32(2):401–407CrossRefGoogle Scholar
  39. 39.
    Donnet JB (ed) (1993) Carbon black: science and technology. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    ASTM D1765-99, Standard classification system for carbon blacks used in rubber productsGoogle Scholar
  41. 41.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, New JerseyGoogle Scholar
  42. 42.
    Thakur S, Karak N (2014) Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain Chem Eng 2(5):1195–1202CrossRefGoogle Scholar
  43. 43.
    Kausar A, Rafique I, Muhammad B (2016) A review on applications of polymer/carbon nanotube and epoxy/CNT composites. Polym Plast Technol Eng 55(11):1167–1191CrossRefGoogle Scholar
  44. 44.
    Al-Hartomy OA, Al-Ghamdi AA, Al-Salamy F, Dishovsky N, Slavcheva D, El-Tantawy F (2012) Properties of natural rubber-based composites containing fullerene. Int J Polym Sci 2012:1–8CrossRefGoogle Scholar
  45. 45.
    Bera M, Maji PK (2017) Graphene-based polymer nanocomposites: materials for future revolution. MOJ Poly Sci 1(3):00013.  https://doi.org/10.15406/mojps.2017.01.00013CrossRefGoogle Scholar
  46. 46.
    Jaleh B, Sodagar S, Momeni A, Jabbari A (2016) Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties. Mater Res Express 3(8):085028CrossRefGoogle Scholar
  47. 47.
    Bera M, Maji PK (2017) Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer 119:118–133CrossRefGoogle Scholar
  48. 48.
    Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42(7):2587–2593CrossRefGoogle Scholar
  49. 49.
    Dhakate SR, Chaudhary A, Gupta A, Pathak AK, Singh BP, Subhedar KM, Yokozeki T (2016) Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Adv 6(43):36715–36722CrossRefGoogle Scholar
  50. 50.
    Zhang RL, Zhang JS, Zhao LH, Sun YL (2015) Sizing agent on the carbon fibers surface and interface properties of its composites. Fibers Polym 16(3):657CrossRefGoogle Scholar
  51. 51.
    Jiang D, Liu L, Wu G, Zhang Q, Long J, Wu Z, Huang Y (2017) Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase. Polym Compos 38(11):2425–2432CrossRefGoogle Scholar
  52. 52.
    Zhang RL, Huang YD, Li N, Liu L, Su D (2012) Effect of the concentration of the sizing agent on the carbon fibers surface and interface properties of its composites. J Appl Polym Sci 125(1):425–432CrossRefGoogle Scholar
  53. 53.
    Ding X, Wang J, Zhang S, Wang J, Li S (2016) Carbon black-filled polypropylene as a positive temperature coefficient material: effect of filler treatment and heat treatment. Polym Bull 73(2):369–383CrossRefGoogle Scholar
  54. 54.
    Liang JZ, Yang QQ (2009) Mechanical properties of carbon black-filled high-density polyethylene antistatic composites. J Reinf Plast Compos 28(3):295–304CrossRefGoogle Scholar
  55. 55.
    Performance Improvement of Natural Rubber/Carbon Black Composites by Novel CouplingAgents, Yasuo UEKITA Yousuke WATANABE Hironobu IYAMA, Orhan OZTURKGoogle Scholar
  56. 56.
    Ao G, Hu Q, Kim MS (2008) Properties of activated carbon blacks filled SBR rubber composites. Carbon Lett 9(2):115–120CrossRefGoogle Scholar
  57. 57.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23CrossRefGoogle Scholar
  58. 58.
    Naebe M, Abolhasani MM, Khayyam H, Amini A, Fox B (2016) Crack damage in polymers and composites: a review. Polym Rev 56(1):31–69CrossRefGoogle Scholar
  59. 59.
    Jee AY, Lee M (2011) Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr Appl Phys 11(5):1183–1187CrossRefGoogle Scholar
  60. 60.
    Zhang Q, Naito K, Tanaka Y, Kagawa Y (2007) Polyimide/diamond nanocomposites: microstructure and indentation behavior. Macromol Rapid Commun 28(21):2069–2073CrossRefGoogle Scholar
  61. 61.
    Behler KD, Stravato A, Mochalin V, Korneva G, Yushin G, Gogotsi Y (2009) Nanodiamond-polymer composite fibers and coatings. ACS Nano 3(2):363–369CrossRefGoogle Scholar
  62. 62.
    Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71(5):710–716CrossRefGoogle Scholar
  63. 63.
    Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44(11):4415–4421CrossRefGoogle Scholar
  64. 64.
    Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polym Lett 2(10):695–704CrossRefGoogle Scholar
  65. 65.
    Singh ROHIT, Shah M, Jain S, Shit S, Giri RADHASHYAM (2013) Elastomeric composite: mechanical and thermal properties of styrene butadeine rubber (SBR) based on carbon black and nanoclay. J Inf Knwl Res Mech Eng 2:515–521Google Scholar
  66. 66.
    Ahmadi Shooli S, Tavakoli M (2016) Styrene butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites Containing nanoclay and carbon black as fillers for application in tire-tread compounds. J Macromol Sci Part B 55(10):969–983CrossRefGoogle Scholar
  67. 67.
    Wang J, Li Q, Wu C, Xu H (2014) Thermal conductivity and mechanical properties of carbon black filled silicone rubber. Polym Polym Compos 22(4):393CrossRefGoogle Scholar
  68. 68.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670CrossRefGoogle Scholar
  69. 69.
    Baptista R, Mendão A, Guedes M, Marat-Mendes R (2016) An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler. Procedia Struct Integr 1:74–81CrossRefGoogle Scholar
  70. 70.
    Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327CrossRefGoogle Scholar
  71. 71.
    Wang X, Tan D, Chu Z, Chen L, Chen X, Zhao J, Chen G (2016) Mechanical properties of polymer composites reinforced by functionalized graphene prepared via direct exfoliation of graphite flakes in styrene. RSC Adv 6(113):112486–112492CrossRefGoogle Scholar
  72. 72.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRefGoogle Scholar
  73. 73.
    El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5):733–744CrossRefGoogle Scholar
  74. 74.
    Chen Z, Lu H (2012) Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness. J Mater Chem 22(25):12479–12490CrossRefGoogle Scholar
  75. 75.
    Pitchan MK, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos Part A Appl Sci Manuf 90:147–160CrossRefGoogle Scholar
  76. 76.
    Zhang W, Picu RC, Koratkar N (2007) Suppression of fatigue crack growth in carbon nanotube composites. Appl Phys Lett 91(19):193109CrossRefGoogle Scholar
  77. 77.
    Gavrilov AA, Chertovich AV, Khalatur PG, Khokhlov AR (2013) Effect of nanotube size on the mechanical properties of elastomeric composites. Soft Matter 9(15):4067–4072CrossRefGoogle Scholar
  78. 78.
    Fu SY, Lauke B, Mäder E, Yue CY, Hu X (2000) Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl Sci Manuf 31(10):1117–1125CrossRefGoogle Scholar
  79. 79.
    Goertzen WK, Kessler MR (2006) Creep behavior of carbon fiber/epoxy matrix composites. Mater Sci Eng A 421(1):217–225CrossRefGoogle Scholar
  80. 80.
    Kawai M, Takeuchi H, Taketa I, Tsuchiya A (2017) Effects of temperature and stress ratio on fatigue life of injection molded short carbon fiber-reinforced polyamide composite. Compos Part A Appl Sci Manuf 98:9–24CrossRefGoogle Scholar
  81. 81.
    Sharma S, Chandra R, Kumar P, Kumar N (2016) Mechanical properties of carbon nanofiber reinforced polymer composites-molecular dynamics approach. JOM 68(6):1717–1727CrossRefGoogle Scholar
  82. 82.
    Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43(5):1701–1703CrossRefGoogle Scholar
  83. 83.
    Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Processing and properties of poly (methyl methacrylate)/carbon nano fiber composites. Compos Part B Eng 35(2):173–178CrossRefGoogle Scholar
  84. 84.
    Rafiee MA, Yavari F, Rafiee J, Koratkar N (2011) Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J Nanopart Res 13(2):733–737CrossRefGoogle Scholar
  85. 85.
    Kim JH, Noh J, Choi H, Lee JY, Kim TS (2017) Mechanical properties of polymer-fullerene bulk heterojunction films: role of nanomorphology of composite films. Chem Mater 29(9):3954–3961CrossRefGoogle Scholar
  86. 86.
    Savagatrup S, Makaram AS, Burke DJ, Lipomi DJ (2014) Mechanical properties of conjugated polymers and polymer-fullerene composites as a function of molecular structure. Adv Func Mater 24(8):1169–1181CrossRefGoogle Scholar
  87. 87.
    Worries about new composite made airplane, http://www.1001crash.com/index-page-composite-lg-2.html. Accessed from Saharanpur, India, dated 20 July 2017
  88. 88.
    Boeing 787, from the ground up, http://www.boeing.com/commercial/aeromagazine/articles/tr_4_06/article_04_2.html. Accessed from Saharanpur, India, dated 20 July 2017
  89. 89.
    Monetta T, Acquesta A, Bellucci F (2015) Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace 2(3):423–434CrossRefGoogle Scholar
  90. 90.
    Kotal M, Banerjee SS, Bhowmick AK (2016) Functionalized graphene with polymer as unique strategy in tailoring the properties of bromobutyl rubber nanocomposites. Polymer 82:121–132CrossRefGoogle Scholar
  91. 91.
    Gong ZG (2013) Nanotechnology application in sports. In: Advanced materials research, vol 662. Trans Tech Publications, pp 186–189Google Scholar
  92. 92.
    Nanotechnology in sports equipment: the game changer, nano work, posted on 27 May 2013Google Scholar
  93. 93.
    Shenoi RA, Dulieu-Barton JM, Quinn S, Blake JIR, Boyd SW (2011) Composite materials for marine applications: key challenges for the future. In: Composite materials. Springer, London, pp 69–89CrossRefGoogle Scholar
  94. 94.
    Deshmukh K, Joshi GM (2014) Novel nanocomposites of graphene oxide reinforced poly (3, 4-ethylenedioxythiophene)-block-poly (ethylene glycol) and polyvinylidene fluoride for embedded capacitor applications. RSC Adv 4(71):37954–37963CrossRefGoogle Scholar
  95. 95.
    Harun FKC, Jumadi AM, Mahmood NH (2011) Carbon black polymer composite gas sensor for electronic nose. Methods 6:8Google Scholar
  96. 96.
    Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF (2011) Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 47(31):8892–8894CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Advanced Materials Research Laboratory (AMRL), Department of Polymer and Process EngineeringIndian Institute of Technology RoorkeeSaharanpurIndia

Personalised recommendations