Advertisement

Development of Nano-rough Zn0.92 Fe0.08O Thin Film by High Electro-spin Technique via Solid-State Route and Verify as Methane Sensor

  • Brij Bansh Nath Anchal
  • Preetam Singh
  • Ram Pyare
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)

Abstract

In this paper, development of nano-rough Zn0.92 Fe0.08O thin film (NFZO) on glass substrate and application in the detection of methane are reported. The deposition of film used technique is high electro-spin 500–3500 rpm pattern. Doping of 8% iron in zinc oxide synthesized by solid-state route and chemical route is applied in spin coating. Study of thin film characterizions by HR-SEM, EDX and AFM, while sensor response for 100–300 ppm methane at 150 °C. There are iron ions like ferrous and ferric improved to the gas sensing properties. Overall sensitivity rapidly increases with concentrations of methane at 150 °C. The deposition of NFZO by the high rpm spin pattern is low cost and simple operation.

Keywords

HR-SEM EDX AFM Thin film Sensor 

Notes

Acknowledgements

This work is supported by Department of Ceramic Engineering of Indian Institute of Technology (BHU), Varanasi, India and Central Instrument Facility Centre-IIT (BHU), Varanasi, India.

References

  1. 1.
    Zhu, L., & Zeng, W. (2017). Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical, 267, 242–261.CrossRefGoogle Scholar
  2. 2.
    Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Letters, 7, 97–120.CrossRefGoogle Scholar
  3. 3.
    Singh, K., Devi, V., Dhar, R., & Mohan, D. (2015). Structural, optical and electronic properties of Fe doped ZnO thin films. Superlattices and Microstructures, 85, 433–437.CrossRefGoogle Scholar
  4. 4.
    Rambu, A. P., Doroftei, C., Ursu, L., & Iacomi, F. (2013). Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method. Journal of Materials Science, 48, 4305–4312.CrossRefGoogle Scholar
  5. 5.
    Gao, F., Liu, X. Y., Zheng, L. Y., Li, M. X., Bai, Y. M., & Xie, J. (2013). Microstructure and optical properties of Fe-doped ZnO thin films prepared by DC magnetron sputtering. Journal of Crystal Growth, 371, 126–129.CrossRefGoogle Scholar
  6. 6.
    Mitra, P., & Mukhopadhyay, A. (2007). ZnO thin film as methane sensor. Bulletin of the Polish Academy of Sciences-Technical Sciences, 55, 281–285.Google Scholar
  7. 7.
    Basu, P. K., Jana, S. K., Saha, H., & Basu, S. (2008). Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sensors & Actuators, B: Chemical, 135, 81–88.CrossRefGoogle Scholar
  8. 8.
    Motaung, D. E., Mhlongo, G. H., Kortidis, I., Nkosi, S. S., Malgas, G. F., Mwakikunga, B. W., et al. (2013). Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing. Applied Surface Science, 279, 142–149.CrossRefGoogle Scholar
  9. 9.
    Bhattacharyya, P., Basu, P. K., Saha, H., & Basu, S. (2007). Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method. Sensors & Actuators, B: Chemical, 124, 62–67.CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya, P., Mishra, G. P., & Sarkar, S. K. (2011). The effect of surface modification and catalytic metal contact on methane sensing performance of nano-ZnO-Si heterojunction sensor. Microelectronics Reliability, 51, 2185–2194.CrossRefGoogle Scholar
  11. 11.
    Mitra, P., Chatterjee, A. P., & Maiti, H. S. (1998). ZnO thin film sensor. Materials Letters, 35, 33–38.CrossRefGoogle Scholar
  12. 12.
    Choudhary, M., Mishra, V. N., & Dwivedi, R. (2013). Effect of temperature on Palladium-doped Tin Oxide (SnO2) thick film gas sensor. Advanced Science, Engineering and Medicine, 5, 932–936.CrossRefGoogle Scholar
  13. 13.
    Basu, S., & Basu, P. K. (2009). Nanocrystalline metal oxides for methane sensors: Role of noble metals. Journal of Sensors, 2009.Google Scholar
  14. 14.
    Cui, J., Shi, L., Xie, T., Wang, D., & Lin, Y. (2016). UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sensors & Actuators, B: Chemical, 227, 220–226.CrossRefGoogle Scholar
  15. 15.
    Sadek, A. Z., Choopun, S., Wlodarski, W., Ippolito, S. J., & Kalantar-zadeh, K. (2007). Characterization of ZnO nanobelt-based Gas Sensor for H2, NO2, and hydrocarbon sensing. IEEE Sensors Journal, 7, 919–924.CrossRefGoogle Scholar
  16. 16.
    Baranowska-Korczyc, A., Reszka, A., Sobczak, K., Sikora, B., Dziawa, P., Aleszkiewicz, M., et al. (2012). Magnetic Fe doped ZnO nanofibers obtained by electrospinning. Journal of Sol-Gel Science and Technology, 61, 494–500.CrossRefGoogle Scholar
  17. 17.
    Vyas, R., et al. (2015). Comparative study of Fe–doped ZnO nanowire bundle and their thin film for NO2 and CH4 gas sensing. Macromolecular Symposia, 357 (1), 99–104.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Brij Bansh Nath Anchal
    • 1
  • Preetam Singh
    • 1
  • Ram Pyare
    • 1
  1. 1.Department of Ceramic EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations