Advertisement

Image Quality Assessment: A Review to Full Reference Indexes

  • Mahdi Khosravy
  • Nilesh Patel
  • Neeraj Gupta
  • Ishwar K. Sethi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)

Abstract

An image quality index plays an increasingly vital role in image processing applications for dynamic monitoring and quality adjustment, optimization and parameter setting of the imaging systems, and finally benchmarking the image processing techniques. All the above goals highly require a sustainable quantitative measure of image quality. This manuscript analytically reviews the popular reference-based metrics of image quality which have been employed for the evaluation of image enhancement techniques. The efficiency and sustainability of eleven indexes are evaluated and compared in the assessment of image enhancement after the cancellation of speckle, salt and pepper, and Gaussian noises from MRI images separately by a linear filter and three varieties of morphological filters. The results indicate more clarity and sustainability of similarity-based indexes. The direction of designing a universal similarity-based index based on information content of the image is suggested as a future research direction.

Keywords

Image quality measurement Error measurement Similarity measurement Noise cancellation Image enhancement 

References

  1. 1.
    Khosravy, M., Gupta, N., Marina, N., Sethi, I. K., & Asharif, M. R. (2017). Brain action inspired morphological image enhancement. In Nature-Inspired Computing and Optimization (pp. 381–407). Springer: Cham.Google Scholar
  2. 2.
    Khosravy, M., Gupta, N., Marina, N., Sethi, I. K., & Asharif, M. R. (2017). Perceptual Adaptation of Image Based on ChevreulMach Bands Visual Phenomenon. IEEE Signal Processing Letters, 24(5), 594–598.CrossRefGoogle Scholar
  3. 3.
    Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., & Caselli, F. (2008). Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE transactions on instrumentation and measurement, 57(7), 1422–1430.CrossRefGoogle Scholar
  4. 4.
    Eskicioglu, A. M., & Fisher, P. S. (1993). A survey of quality measures for gray scale image compression. In Proceeings of the 1993 Space and Earth Science Data Compression Workshop (NASA Conference Publication 3191), Snowbird, Utah, April 2 (pp. 49–61).Google Scholar
  5. 5.
    Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.CrossRefGoogle Scholar
  6. 6.
    Nill, N. (1985). A visual model weighted cosine transform for image compression and quality assessment. IEEE Transactions on communications, 33(6), 551–557.CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Bovik, A. C., & Lu, L. (2002). Why is image quality assessment so difficult? In IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 3313–3316).Google Scholar
  8. 8.
    Wang, Z., & Bovik, A. C. (2003). Multi-scale structural similarity for image quality assessment. In Proceedings of IEEE Asilomar Conference on Signals (vol. 2, no. Ki L, pp. 1398–1402).Google Scholar
  9. 9.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  10. 10.
    Chen, G., Yang, C., & Xie, S. L. (2006). Gradient-based structural similarity for image quality assessment. In International Conference on Image Processing (No. 1, pp. 2929–2932).Google Scholar
  11. 11.
    Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., & Markey, M. K. (2009). Complex wavelet structural similarity: A new image similarity index. IEEE Transactions on Image Processing, 18(11), 2385–2401.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Khosravy, M., Asharif, M. R., & Yamashita, K. (2009). A PDF-matched short-term linear predictability approach to blind source separation. International Journal of Innovative Computing, Information and Control (IJICIC), 5(11), 3677–3690.Google Scholar
  13. 13.
    Khosravy, M., Asharif, M. R., & Yamashita, K. (2011). A theoretical discussion on the foundation of Stones blind source separation. Signal, Image and Video Processing, 5(3), 379–388.CrossRefGoogle Scholar
  14. 14.
    Khosravy, M., Asharif, M., & Yamashita, K. (2008). A probabilistic short-length linear predictability approach to blind surce sparation. In 23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2008), Yamaguchi, Japan (pp. 381–384).Google Scholar
  15. 15.
    Khosravy, M., Alsharif, M. R., & Yamashita, K. (2009). A PDF-matched modification to stones measure of predictability for blind source separation. In International Symposium on Neural Networks Springer (pp. 219–228). Heidelberg: Berlin.CrossRefGoogle Scholar
  16. 16.
    Lin, Q. (1993). Halftone image quality analysis based on a human vision model. Proceedings of SPIE, 1913, 378–389.CrossRefGoogle Scholar
  17. 17.
    Mitsa, T., Varkur, K. L., & Alford, J. R. (1993). Frequency channel based visual models as quantitative quality measures in halftoning. Proceedings of SPIE, 1913, 390–401.CrossRefGoogle Scholar
  18. 18.
    Mitsa, T., & Varkur, K. L. (1992). Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (Vol. 3, pp. 313–316).Google Scholar
  19. 19.
    Damera-Venkata, N., Kite, T. D., Geisler, W. S., Evans, B. L., & Bovik, A. C. (2000). Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 9(4), 636–650.CrossRefGoogle Scholar
  20. 20.
    Zhou, W., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  21. 21.
    Shnayderman, A., Gusev, A., & Eskicioglu, A. M. (2006). An SVD-based grayscale image quality measure for local and global assessment. IEEE Transactions on Image Processing, 15(2), 422–429.CrossRefGoogle Scholar
  22. 22.
    Khosravy, M., Gupta, N., Marina, N., Sethi, I. K., & Asharif, M. R. (2017). Morphological filters: An inspiration from natural geometrical erosion and dilation. In Nature-Inspired Computing and Optimization (pp. 349–379). Springer: Cham.Google Scholar
  23. 23.
    Sedaaghi, M. H. & Khosravy, M. (2003). Morphological ECG signal preprocessing with more efficient baseline drift removal. In Proceedings of the 7th IASTED International Conference, ASC (pp. 205–209).Google Scholar
  24. 24.
    Sedaaghi, M. H., & Wu, Q. H. (1998). Weighted Morphological Filter Electronics Letters, 34(16), 1566–1567.CrossRefGoogle Scholar
  25. 25.
    Sedaaghi, M. H., Daj, R., & Khosravi, M. (2001). Mediated morphological filters. In IEEE International Conference on Image Processing, ICIP2001 (Vol. 3, pp. 692–695).Google Scholar
  26. 26.
    Khosravy, M, Asharif, M. R., & Sedaaghi, M. H. (2008). Medical image noise suppression using mediated morphology. In IEICE Technical Report (Vol. 107, no. 461, pp. 265–270), MI2007–111, Okinawa, Japan.Google Scholar
  27. 27.
    Khosravy, M., Asharif, M. R. & Sedaaghi, M. H. (2008). Morphological adult and fetal ECG preprocessing employing mediated morphology. In IEICE Technical Report (Vol. 107, no. 461, pp. 363–369), MI2007–129, Bunka, Tenbusu, Okinawa, Japan.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mahdi Khosravy
    • 1
  • Nilesh Patel
    • 2
  • Neeraj Gupta
    • 2
  • Ishwar K. Sethi
    • 2
  1. 1.Electrical Engineering DepartmentFederal University of Juiz de ForaJuiz de ForaBrazil
  2. 2.School of Computer and Engineering ScienceOakland UniversityRochesterUSA

Personalised recommendations