Evaluation of Thermal Properties of Thoria–Urania Fuel

  • Joydipta BanerjeeEmail author
  • Santu Kaity
  • Koushik Bhandari
  • Arun Kumar
  • Srikumar Banerjee
Conference paper


Thoria–urania (ThO2–UO2)-based fuel system is the proposed fuel for the Advanced Heavy Water Reactor (AHWR) in India. As a part of thoria-based fuel development for India’s nuclear power programme, thoria–urania (ThO2–UO2) solid solutions were prepared by Coated Agglomerate Pelletization (CAP) process which has many advantages over conventional powder pellet route for handling 233U powders. Five compositions, namely ThO2, ThO2–4%UO2, ThO2–10%UO2, ThO2–20%UO2 and UO2 (all compositions are in wt%) were prepared and used in this study. Characterization of thoria–urania fuel was carried out in terms of both thermal expansion and hardness at elevated temperature (hot hardness). The data obtained on thermal expansion were compared with those available in the literature data and presented in the temperature range of 300–1800 K. It was found to be in good agreement with the reported data of other authors. The data on hot hardness of thoria–urania fuel are sparse and are presented here as a function of temperature from 300 to 1573 K. The experimental data on both thermal expansion and hot hardness for all the compositions were least squares fitted and analytical expressions obtained are presented as recommended data. The trend obtained for the above data in terms of both as a function of temperature and composition are critically evaluated and discussed.


Thoria–urania Fuel Solid solutions Thermal expansion Hot hardness 



We are thankful to Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC), Tarapur, India, for providing the thoria, urania and thoria–urania pellets used in this study.


  1. 1.
    S. Banerjee, R.K. Sinha, S. Kailas, J. Physics: Conference Series 312 (2011) 062002Google Scholar
  2. 2.
    A. Kakodkar, Nu-Power 23 (2009) 22Google Scholar
  3. 3.
    A. Kakodkar, Shaping the 3rd stage of Indian Nuclear Programme, Presented at Annual Conference of the Indian Nuclear Society, INSAC-2001, Indore, 2001Google Scholar
  4. 4.
    K. Balakrishnan, S. Majumdar, A. Ramanujam, A. Kakodkar, in The Indian Perspective on Thorium Fuel Cycles, IAEA TECDOC-1319, Thorium Fuel Cycle: Options and Trends, Nov 2002, p. 257Google Scholar
  5. 5.
    K. Anantharaman, V. Shivakumar, D. Saha, Utilisation of thorium in reactors. J. Nucl. Mater. 383, 119–121 (2008)CrossRefGoogle Scholar
  6. 6.
    Department of Atomic Energy in India, Atomic Energy in India. A Perspective, Government of India, Sept 2003. (
  7. 7.
    R.K. Sinha, A. Kakodkar, Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl. Eng. Des 236, 683–700 (2006)CrossRefGoogle Scholar
  8. 8.
    Joydipta Banerjee, T.R.G. Kutty, Arun Kumar, H.S. Kamath, Srikumar Banerjee, Densification behaviour and sintering kinetics of ThO2–4% UO2 pellet. J. Nucl. Mater. 408, 224–230 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Ray, J. Banerjee, T.R.G. Kutty, Arun Kumar, S. Banerjee, Construction of master sintering curve of ThO2 pellets using optimization technique. Sci. Sinter. 44, 147–160 (2012)CrossRefGoogle Scholar
  10. 10.
    Joydipta Banerjee, Aditi Ray, Arun Kumar, Srikumar Banerjee, Studies on sintering kinetics of ThO2–UO2 pellets using master sintering curve approach. J. Nucl. Mater. 443, 467–478 (2013)CrossRefGoogle Scholar
  11. 11.
    Joydipta Banerjee, S.C. Parida, T.R.G. Kutty, Arun Kumar, Srikumar Banerjee, Specific heats of thoria–urania solid solutions. J. Nucl. Mater. 427, 69–78 (2012)CrossRefGoogle Scholar
  12. 12.
    T.R.G. Kutty, K.B. Khan, P.S. Somayajulu, A.K. Sengupta, J.P. Panakkal, A. Kumar, H.S. Kamath, Development of CAP process for fabrication of ThO2–UO2 fuels Part I: Fabrication and densification behaviour. J. Nucl. Mater. 373, 299 (2008)CrossRefGoogle Scholar
  13. 13.
    T.R.G. Kutty, R.V. Kulkarni, P. Sengupta, K.B. Khan, K. Bhanumurthy, A.K. Sengupta, J.P. Panakkal, A. Kumar, H.S. Kamath, Development of CAP process for fabrication of ThO2–UO2 fuels part II: characterization and property evaluation. J. Nucl. Mater. 373, 303 (2008)Google Scholar
  14. 14.
    T.R.G. Kutty, P.V. Hegde, J. Banerjee, K.B. Khan, A.K. Sengupta, G.C. Jain, S. Majumder, H.S. Kamath, Densification behaviour of ThO2–PuO2 pellets with varying PuO2 content using dilatometry. J. Nucl. Mater. 312, 224–235 (2003)CrossRefGoogle Scholar
  15. 15.
    Y.S. Touloukian, R.K. Kirby, R.E. Taylor, T.Y.R. Lee, Thermal Expansion. Nonmetallic Solids (IFI/Plenum, New York, 1970)Google Scholar
  16. 16.
    D.G. Martin, The thermal expansion of solid UO2 and (U, Pu) mixed oxides—a review and recommendations. J. Nucl. Mater. 152, 94 (1988)CrossRefGoogle Scholar
  17. 17.
    J.K. Fink, Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 1–18 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Bakker, E.H.P. Cordfunke, R.J.M. Konings, R.P.C. Schram, Critical evaluation of the thermal properties of Th02 and Th1−yUy02 and a survey of the literature data on Th1−yPuy02. J. Nucl. Mater. 250, 1–12 (1997)CrossRefGoogle Scholar
  19. 19.
    C.A. Alexander, J.S. Ogden, G.W. Cunningham, Battelle Memorial Institute Report BMI- 1789, 1967Google Scholar
  20. 20.
    A.C. Momin, E.B. Mirza, M.D. Mathews, High temperature X-ray diffractometric studies on the lattice thermal expansion behaviour of UO2, ThO2 and (UO2Th0.8) O2 doped with fission product oxides. J. Nucl. Mater. 185, 308 (1991)CrossRefGoogle Scholar
  21. 21.
    J.R. Springer, E.A Eldrige, M.U. Goodyear, T.R. Wright, J.F. Langedrost, Battelle Memorial Institute Report BMI-X-10210, 1967Google Scholar
  22. 22.
    D.N. Turner, P.D. Smith, Australian Atomic Energy Commission report AAEC E183, 1967Google Scholar
  23. 23.
    C.P. Kemper, R.O. Elliot, J. Chem. Phys. 30, 1524 (1959)CrossRefGoogle Scholar
  24. 24.
    E.D. Lynch, R.J. Beals, Argonne National Laboratory Annual report for 1962. ANL-6677, 1962, p. 101Google Scholar
  25. 25.
    P. Rodriguez, C.V. Sundaram, Nuclear and materials aspects of the thorium fuel cycle. J. Nucl. Mater. 100, 227 (1981)CrossRefGoogle Scholar
  26. 26.
    R.M. Powers, H. Shapiro, Quarterly Technical Progress Report, Sylvania Corning Nuclear Corp. SCNC-301, 1959Google Scholar
  27. 27.
    A.K. Tyagi, M.D. Mathews, Thermal expansion of ThO2–2 wt% UO2 by HT-XRD. J. Nucl. Mater. 278, 123–125 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Anthonysamy, G. Panneerselvam, S. Bera, S.V. Narasimhan, P.R. Vasudeva Rao, Studies on thermal expansion and XPS of urania–thoria solid solutions. J. Nucl. Mater. 281, 15–21 (2000)CrossRefGoogle Scholar
  29. 29.
    H.D. Merchant, G.S. Murthy, S.N. Bhadur, L.T. Dwivedi, Y. Mehrotra, Hardness-temperature relationships in metals. J. Mater. Sci. 8, 437 (1973)CrossRefGoogle Scholar
  30. 30.
    J.H. Westbrook, Temperature dependence of the hardness of pure metals. ASM Trans. 45, 221 (1953)Google Scholar
  31. 31.
    E.R. Petty, Hardness and other physical properties of metals in relation to temperature. Metallurgica 56, 231 (1957)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Joydipta Banerjee
    • 1
    Email author
  • Santu Kaity
    • 1
  • Koushik Bhandari
    • 1
  • Arun Kumar
    • 2
  • Srikumar Banerjee
    • 2
  1. 1.Radiometallurgy DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations