Advertisement

Submerged Waterjet

  • Can Kang
  • Haixia Liu
  • Ning Mao
  • Yongchao Zhang
Chapter

Abstract

Successful applications of waterjet have been observed in engineering fields. For submerged waterjet, the interaction between the jet stream and ambient water is intricate. As the jet pressure is high, cavitation might occur; meanwhile, due to the resistance of surrounding water, the integrity of the jet stream will be ruined rapidly after the waterjet is issued from the nozzle. In this chapter, submerged waterjets driven at various pressures are discussed. Flow velocity is measured using particle image velocimetry technique; therefore, overall energy dissipation with the progression of the waterjet is evaluated. Flow patterns are constructed and analyzed. Pressure fluctuations in surrounding water excited by the waterjet are measured and explained. Meanwhile, the cavitation phenomenon arising in such a special environment is discussed. Not just cavity topology but also the cavitation erosion effects on the specimen impacted by the submerged waterjet are investigated. A comprehensive study of the submerged waterjet is presented.

References

  1. 1.
    Dalfré Filho JG, Assis MP, Genovez AIB. Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus. J Hydro Environ Res. 2015;9:259–267.CrossRefGoogle Scholar
  2. 2.
    Shaffer F, Savaş Ö, Lee K, de Vera G. Determining the discharge rate from a submerged oil leak jet using ROV video. Flow Meas Instrum. 2015;43:34–46.CrossRefGoogle Scholar
  3. 3.
    Wright MM, Epps B, Dropkin A, Truscott TT. Cavitation of a submerged jet. Exp Fluids. 2013;54:1541.CrossRefGoogle Scholar
  4. 4.
    Chahine GL, Kapahi A, Choi JK, Hsiao CT. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason Sonochem. 2015;29:528–549.CrossRefGoogle Scholar
  5. 5.
    Liu H, Shao Q, Kang C, Gong C. Impingement capability of high-pressure submerged water jet: numerical prediction and experimental verification. J Cent South Univ. 2015;22:3712–3721.CrossRefGoogle Scholar
  6. 6.
    Ganippa L, Bark G, Andersson S, Chomiak J. Cavitation: a contributory factor in the transition from symmetric to asymmetric jets in cross-flow nozzles. Exp. Fluids. 2004;36:627–634.CrossRefGoogle Scholar
  7. 7.
    Wilms J, Beck T, Sorensen CM, Hosni MH, Eckels SJ, Tomasi D. Experimental measurements and flow visualization of water cavitation through a nozzle. In: Proceedings of the ASME 2014 international mechanical engineering congress and exposition IMECE2014; Montreal, Quebec, Canada; 2014.Google Scholar
  8. 8.
    Cheng Y, del Mar Torregrosa M, Villegas A, Diez FJ. Time resolved scanning PIV measurements at fine scales in a turbulent jet. Int J Heat Fluid Flow. 2011;32:708–718.CrossRefGoogle Scholar
  9. 9.
    Gopalan S, Katz J, Knio O. The flow structure in the near field of jets and its effect on cavitation inception. J Fluid Mech. 1999;398:1–43.zbMATHCrossRefGoogle Scholar
  10. 10.
    Nobukazu S, Hideki H, Yukio I, Masaru S, Kozo S. Analysis of submerged water jets by visualization method flow pattern and self-induced vibration of jet. J Vis. 2004;7:281–289.CrossRefGoogle Scholar
  11. 11.
    Nobel AJ, Talmon AM. Measurements of the stagnation pressure in the center of a cavitating jet. Exp Fluids. 2012;52:403–415.CrossRefGoogle Scholar
  12. 12.
    Zeleňák M, Foldyna J, Scucka J, Hloch S, Riha Z. Visualisation and measurement of high-speed pulsating and continuous water jets. Measurement. 2015;72:1–8.CrossRefGoogle Scholar
  13. 13.
    Geller S, Uphoff S, Krafczyk M. Turbulent jet computations based on MRT and Cascaded Lattice Boltzmann models. Comput Math Appl. 2012;65(12):1956–1966.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kendil FZ, Danciu DV, Schmidtke M, Salah AB, Lucas D, Krepper E, Mataoui A. Flow field assessment under a plunging liquid jet. Prog Nucl Energy. 2012;56:100–110.CrossRefGoogle Scholar
  15. 15.
    Wang Z, He P, Lv Y, Zhou J, Fan J, Cen K. Direct numerical simulation of subsonic round turbulent jet. Flow Turbul Combust. 2010;84(4):669–686.zbMATHCrossRefGoogle Scholar
  16. 16.
    Lawson NJ, Davidson MR. Self-sustained oscillation of a submerged jet in a thin rectangular cavity. J Fluids Struct. 2001;15:59–81.CrossRefGoogle Scholar
  17. 17.
    Ghasemi A, Roussinova VT, Balachandar R, Barron R. Reynolds number effects in the near-field of a turbulent square jet. Exp Thermal Fluid Sci. 2015;61:249–258.CrossRefGoogle Scholar
  18. 18.
    Shim YM, Sharma RN, Richards P. Proper orthogonal decomposition analysis of the flow field in a plane jet. Exp Thermal Fluid Sci. 2013;51:37–55.CrossRefGoogle Scholar
  19. 19.
    Zhou Y, Lucey AD. Fluid-structure-sound interactions and control. Lecture notes in mechanical engineering. Berlin: Springer; 2016;229–234.Google Scholar
  20. 20.
    Fitzgerald JA, Garimella SV. A study of the flow field of a confined and submerged impinging jet. Int J Heat Mass Transf. 1998;41:1025–1034.CrossRefGoogle Scholar
  21. 21.
    Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R. High-speed observation of ultrahigh-speed submerged water jets. Exp Thermal Fluid Sci. 1996;12:411–416.CrossRefGoogle Scholar
  22. 22.
    Zhang F, Liu H, Junchao X, Tang C. Experimental investigation on noise of cavitation nozzle and its chaotic behaviour. Chin J Mech Eng. 2013;26(4):758–762.CrossRefGoogle Scholar
  23. 23.
    Peng G, Shimizu S. Progress in numerical simulation of cavitating water jets. J Hydrodyn. 2013;25:502–509.CrossRefGoogle Scholar
  24. 24.
    Hutli EAF, Nedeljkovic MS. Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J Fluids Eng Trans ASME. 2008;130:021304-1-8.CrossRefGoogle Scholar
  25. 25.
    Sato K, Taguchi Y, Hayashi S. High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet. J Flow Control Meas Vis. 2013;1:102–107.CrossRefGoogle Scholar
  26. 26.
    Hongxiang H, Zheng Y, Qin CP. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion. Nucl Eng Des. 2010;240:2721–2730.CrossRefGoogle Scholar
  27. 27.
    Wang Y, Qiu L, Reitz RD, Diwakar R. Simulating cavitating liquid jets using a compressible and equilibrium two-phase flow solver. Int J Multiph Flow. 2014;63:52–67.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Peters A, Sagar H, Lantermann U, el Moctar O. Numerical modelling and prediction of cavitation erosion. Wear. 2015;338–339:189–201.CrossRefGoogle Scholar
  29. 29.
    Li Z, Pourquie M, van Terwisga T. Assessment of cavitation erosion with a URANS method. J Fluids Eng Trans ASME. 2014;136:041101-1-11.CrossRefGoogle Scholar
  30. 30.
    Kang C, Liu H, Li X, Zhou Ya, Cheng X. A numerical and experimental study of oblique impact of ultra-high pressure abrasive water jet. Adv Mech Eng. 2016;8(3):1–14.Google Scholar
  31. 31.
    Verhaagen B, Rivas DF. Measuring cavitation and its cleaning effect. Ultrason Sonochem. 2015;29:619–628.CrossRefGoogle Scholar
  32. 32.
    Petkovšek M, Dular M. Simultaneous observation of cavitation structures and cavitation erosion. Wear. 2013;300:55–64.CrossRefGoogle Scholar
  33. 33.
    Anantharamaiah N, Tafreshi H, Pourdeyhimi B. Numerical simulation of the formation of constricted waterjets in hydroentangling nozzles: effects of nozzle geometry. Chem Eng Res Des. 2006;84(3):231–238.CrossRefGoogle Scholar
  34. 34.
    Alturki F, Abouel-Kasem A, Ahmed SM. Characteristics of cavitation erosion using image processing techniques. J Tribol Trans ASME. 2013;135:014502-1-7.CrossRefGoogle Scholar
  35. 35.
    ASTM G134-95(2010)e1. Standard test method for erosion of solid materials by a cavitating liquid jet; 2010.Google Scholar
  36. 36.
    Hutli EAF, Nedeljkovic MS, Radovic NA. Mechanics of submerged jet cavitating action: material properties, exposure time and temperature effects on erosion. Arch Appl Mech. 2008;78:329–341.CrossRefGoogle Scholar
  37. 37.
    Hu H, Jiang S, Tao Y, Xiong T, Zheng Y. Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating. Nucl Eng Des. 2011;241:4929–37.CrossRefGoogle Scholar
  38. 38.
    Kang C, Liu H, Li X, Cheng X. Cavitation in submerged water jet at high jet pressure. In: Proceedings of the ASME/JSME/KSME joint fluids engineering conference, Seoul, South Korea; 2015 July 26–31.Google Scholar
  39. 39.
    Sahaya Grinspan A, Gnanamoorthy R. Development of a novel oil cavitation jet peening system and cavitation jet erosion in Aluminum alloy, AA 6063-T6. J Fluids Eng Trans ASME. 2009;131:061301-1-8.CrossRefGoogle Scholar
  40. 40.
    Fortes Patella R, Challier G, Reboud J-L, Archer A. Energy balance in cavitation erosion: from bubble collapse to indentation of material surface. J Fluids Eng Trans ASME. 2013;135:011303-1-11.CrossRefGoogle Scholar
  41. 41.
    Abouel-Kasem A, Ezz El-Deen A, Emara KM, Ahmed SM. Investigation into cavitation erosion pits. J Tribol Trans ASME. 2009;131:031605-1-7.CrossRefGoogle Scholar
  42. 42.
    Choi J-K, Jayaprakash A, Kapahi A, Hsiao C-T, Chahine GL. Relationship between space and time characteristics of cavitation impact pressures and resulting pits in materials. J Mater Sci. 2014;49:3034–3051.CrossRefGoogle Scholar
  43. 43.
    Soyama H, Takeo F. Comparison between cavitation peening and shot peening for extending the fatigue life of a duralumin plate with a hole. J Mater Process Technol. 2016;227:80–87.CrossRefGoogle Scholar
  44. 44.
    Osterman A, Bachert B, Sirok B, Dular M. Time dependant measurements of cavitation damage. Wear. 2009;266:945–951.CrossRefGoogle Scholar
  45. 45.
    Sun Z, Kang X, Wang X. Experimental system of cavitation erosion with water-jet. Mater Des. 2005;26:59–63.CrossRefGoogle Scholar
  46. 46.
    Choi J-K, Jayaprakash A, Chahine GL. Scaling of cavitation erosion progression with cavitation intensity and cavitation source. Wear. 2012;278–279:53–61.CrossRefGoogle Scholar
  47. 47.
    Vickers GW, Houlston R. Modelling the erosion efficiency of cavitating cleaning jets. Appl Sci Res. 1983;40:377–391.CrossRefGoogle Scholar
  48. 48.
    Franc J-P, Riondet M, Karimi A, Chahine GL. Material and velocity effects on cavitation erosion pitting. Wear. 2012;274–275:248–259.CrossRefGoogle Scholar
  49. 49.
    Li J, Yi M, Shen Z, Ma S, Zhang X, Xing Y. Experimental study on a designed jet cavitation device for producing two-dimensional nanosheets. Sci China Technol Sci. 2012;55:2815–2819.CrossRefGoogle Scholar
  50. 50.
    De Giorgi MG, Ficarella A, Tarantino M. Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization. Int J Heat Fluid Flow. 2013;39:160–172.CrossRefGoogle Scholar
  51. 51.
    Venkatesh VC. Machining of glass by impact processes. J Mech Working Technol. 1983;8:247–260.CrossRefGoogle Scholar
  52. 52.
    Tönshoff HK, Kroos F, Marzenell C. High-pressure water peening-a new mechanical surface-strengthening process. Ann CIRP. 1997;46(1):113–116.CrossRefGoogle Scholar
  53. 53.
    Kang C, Zhou L, Yang M, Wang Y. Experiment study on cavitating waterjet induced by a central body in the nozzle. J Eng Thermophys. 2013;34(12):2275–2278.Google Scholar
  54. 54.
    Lemanov VV, Terekhov VI, Sharov KA, Shumeiko AA. An experimental study of submerged jets at low Reynolds numbers. Tech Phys Lett. 2013;39(5):421–423.CrossRefGoogle Scholar
  55. 55.
    Guo B, Langrish TAG, Fletcher DF. An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet. Appl Math Model. 2001;25:635–653.zbMATHCrossRefGoogle Scholar
  56. 56.
    Anwar S, Axinte DA, Becker AA. Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol. 2013;213:180–193.CrossRefGoogle Scholar
  57. 57.
    Ayed Y, Germain G, Ammar A, Furet B. Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance. Wear. 2013;305:228–237.CrossRefGoogle Scholar
  58. 58.
    Hitoshi S. Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear. 2013;297:895–902.CrossRefGoogle Scholar
  59. 59.
    Bakir F, Rey R, Gerber AG, Belamri T, Hutchinson B. Numerical and experimental investigations of the cavitating behavior of an inducer. Int J Rotating Mach. 2004;10:15–25.CrossRefGoogle Scholar
  60. 60.
    Kang C, Liu H. Turbulent features in the coherent central region of a plane water jet issuing into quiescent air. J Fluids Eng. 2014;136(8):081205.CrossRefGoogle Scholar
  61. 61.
    Kotsovinos N, Angelidis P. The momentum flux in turbulent submerged jets. J Fluid Mech. 1991;229:453–470.zbMATHCrossRefGoogle Scholar
  62. 62.
    Babarsad MS, Jahromi HM, Kashkooli H, Samani HMV, Sedghi H. Experimental study of maximum velocity and effective length in submerged jet. Indian J Sci Technol. 2013;6(1):18–20.Google Scholar
  63. 63.
    Weiland C, Vlachos PP. Round gas jets submerged in water. Int J Multiph Flow. 2013;48:46–57.CrossRefGoogle Scholar
  64. 64.
    Rosler RS, Bankoff SG. Large-scale turbulence characteristics of a submerged water jet. AIChE J. 1963;9(5):672–676.CrossRefGoogle Scholar
  65. 65.
    Franklin RE, Mcmillan J. Noise generation in cavitating flows, the submerged jet. J Fluids Eng. 1984;106:336–341.CrossRefGoogle Scholar
  66. 66.
    Soyama H, Kikuchi T, Nishikawa M, Takakuwa O. Introduction of compressive residual stress into stainless steel by employing a cavitating jet in air. Surf Coat Technol. 2011;205:3167–3174.CrossRefGoogle Scholar
  67. 67.
    Qu X, Goharzadeh A, Khezzar L, Molki A. Experimental characterization of air-entrainment in a plunging jet. Exp Thermal Fluid Sci. 2013;44:51–61.CrossRefGoogle Scholar
  68. 68.
    Rajesh NR, Sundararaghavan V, Babu NR. A novel approach for modelling of water jet peening. Int J Mach Tools Manuf. 2004;44:855–863.CrossRefGoogle Scholar
  69. 69.
    Odhiambo D, Soyama H. Cavitation shotless peening for improvement of fatigue strength of carbonized steel. Int J Fatigue. 2003;25:1217–1222.CrossRefGoogle Scholar
  70. 70.
    Qin M, Dongying J, Oba R. Investigation of the influence of incidence angle on the process capability of water cavitation peening. Surf Coat Technol. 2006;201:1409–1413.CrossRefGoogle Scholar
  71. 71.
    Takakuwa O, Soyama H. The effect of scanning pitch of nozzle for a cavitating jet during overlapping peening treatment. Surf Coat Technol. 2012;206:4756–4762.CrossRefGoogle Scholar
  72. 72.
    Kang C, Liu H. Small-scale morphological features on a solid surface processed by high-pressure abrasive water jet. Materials. 2013;6(8):3514–3529.CrossRefGoogle Scholar
  73. 73.
    Sahaya Grinspan A, Gnanamoorthy R. Surface modification by oil jet peening in Al alloys, AA6063-T6 and AA6061-T4, part 2: surface morphology, erosion, and mass loss. Appl Surf Sci. 2006;253:997–1005.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Can Kang
    • 1
  • Haixia Liu
    • 2
  • Ning Mao
    • 3
  • Yongchao Zhang
    • 4
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  3. 3.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  4. 4.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations