Advertisement

Segmental Resection

  • Hyun Koo KimEmail author
  • Kook Nam Han
Chapter

Abstract

Segmentectomy for lung cancer is usually required in patients with early lung cancer located in the lung periphery. This procedure has been used for the diagnosis of a solid lung nodule, resection of pulmonary metastasis from extrathoracic malignancy, and sometimes for patients with limited cardiopulmonary reserve who cannot tolerate more rigorous procedures than a lobectomy. A less invasive approach (e.g., video-assisted thoracic surgery [VATS]) for segmentectomy is also a viable option, as treatment of lung cancer and mediastinal lymph node dissection by VATS has been reported as a safe and oncologically feasible procedure and might be considered for the initial treatment of small sized lung cancer less than 2 cm, and in low-risk patients.

An uniportal VATS approach for segmentectomy is usually more complex and difficult than for lobectomy. A thoracic surgeon, experienced in the uniportal VATS approach, could achieve acceptable outcomes using appropriate localization techniques and proper division of the intersegmental plane in this limited surgical view. However, the benefit of the uniportal VATS approach is not evident and there is no proven evidence of superiority over the conventional multi-port VATS approach.

This chapter addresses the technical considerations of uniportal VATS segmentectomy and suggests current options for localization and visualization of the segmental plane during the uniportal VATS. In addition, we review the literature supporting the safety and feasibility of uniportal VATS segmentectomy.

Supplementary material

Video 1

Bilateral uniportal VATS sublobar resection with dual localization technique. RUL wedge resection and LUL upper divisional segmentectomy (MOV 330449 kb)

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefGoogle Scholar
  2. 2.
    Institute USNIoHNC. SEER cancer statistics review. Mar 2016.Google Scholar
  3. 3.
    National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRefGoogle Scholar
  4. 4.
    Jacobson FL, Austin JH, Field JK, et al. Development of The American Association for Thoracic Surgery guidelines for low-dose computed tomography scans to screen for lung cancer in North America: recommendations of The American Association for Thoracic Surgery task force for lung cancer screening and surveillance. J Thorac Cardiovasc Surg. 2012;144:25–32.CrossRefGoogle Scholar
  5. 5.
    Takashima S, Maruyama Y, Hasegawa M, et al. CT findings and progression of small peripheral lung neoplasms having a replacement growth pattern. AJR Am J Roentgenol. 2003;180:817–26.CrossRefGoogle Scholar
  6. 6.
    Park CM, Goo JM, Lee HJ, et al. Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics. 2007;27:391–408.CrossRefGoogle Scholar
  7. 7.
    Kim HK, Jo WM, Jung JH, et al. Needlescopic lung biopsy for interstitial lung disease and indeterminate pulmonary nodules: a report on 65 cases. Ann Thorac Surg. 2008;86:1098–103.CrossRefGoogle Scholar
  8. 8.
    Sepesi B, Walsh GL. Surgical therapy of ground-glass opacities. Semin Diagn Pathol. 2014;31:289–92.CrossRefGoogle Scholar
  9. 9.
    Mogi A, Yajima T, Tomizawa K, et al. Video-assisted thoracoscopic surgery after preoperative CT-guided lipiodol marking of small or impalpable pulmonary nodules. Ann Thorac Cardiovasc Surg. 2015;21:435–9.CrossRefGoogle Scholar
  10. 10.
    Sakamoto T, Takada Y, Endoh M, et al. Bronchoscopic dye injection for localization of small pulmonary nodules in thoracoscopic surgery. Ann Thorac Surg. 2001;72:296–7.CrossRefGoogle Scholar
  11. 11.
    Han KN, Kim HK, Choi YH. Uniportal video-assisted thoracoscopic surgical (VATS) segmentectomy with preoperative dual localization: right upper lobe wedge resection and left upper lobe upper division segmentectomy. Ann Cardiothorac Surg. 2016;5:147–50.CrossRefGoogle Scholar
  12. 12.
    Oh Y, Quan YH, Kim M, et al. Intraoperative fluorescence image-guided pulmonary segmentectomy. J Surg Res. 2015;199:287–93.CrossRefGoogle Scholar
  13. 13.
    Doo KW, Yong HS, Kim HK, et al. Needlescopic resection of small and superficial pulmonary nodule after computed tomographic fluoroscopy-guided dual localization with radiotracer and hookwire. Ann Surg Oncol. 2015;22:331–7.CrossRefGoogle Scholar
  14. 14.
    Lau R, Ng C, Kwok M, et al. Early outcomes following uniportal video-assisted thoracic surgery lung resection. Chest. 2014;145:50A-51-50A-52.Google Scholar
  15. 15.
    Gonzalez-Rivas D, Yang Y, Ng C. Advances in uniportal video-assisted thoracoscopic surgery: pushing the envelope. Thorac Surg Clin. 2016;26:187–201.CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Rivas D, Paradela M, Fernandez R, et al. Uniportal video-assisted thoracoscopic lobectomy: two years of experience. Ann Thorac Surg. 2013;95:426–32.CrossRefGoogle Scholar
  17. 17.
    Rocco G, Martucci N, La Manna C, et al. Ten-year experience on 644 patients undergoing single-port (uniportal) video-assisted thoracoscopic surgery. Ann Thorac Surg. 2013;96:434–8.CrossRefGoogle Scholar
  18. 18.
    Zeltsman D. Current readings: redefining minimally invasive: uniportal video-assisted thoracic surgery. Semin Thorac Cardiovasc Surg. 2014;26:249–54.CrossRefGoogle Scholar
  19. 19.
    Ng CS, Gonzalez-Rivas D, D’Amico TA, Rocco G. Uniportal VATS-a new era in lung cancer surgery. J Thorac Dis. 2015;7:1489–91.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sekhniaidze D, Gonzalez-Rivas D. Uniportal video-assisted thoracoscopic sleeve resection. Ann Cardiothorac Surg. 2016;5:145–6.CrossRefGoogle Scholar
  21. 21.
    Xie D, Wang H, Fei K, et al. Single-port video-assisted thoracic surgery in 1063 cases: a single-institution experiencedagger. Eur J Cardiothorac Surg. 2016;49(Suppl 1):i31–6.CrossRefGoogle Scholar
  22. 22.
    Wang BY, Tu CC, Liu CY, et al. Single-incision thoracoscopic lobectomy and segmentectomy with radical lymph node dissection. Ann Thorac Surg. 2013;96:977–82.CrossRefGoogle Scholar
  23. 23.
    Gonzalez-Rivas D, Mendez L, Delgado M, et al. Uniportal video-assisted thoracoscopic anatomic segmentectomy. J Thorac Dis. 2013;5(Suppl 3):S226–33.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gonzalez-Rivas D, Fieira E, Mendez L, Garcia J. Single-port video-assisted thoracoscopic anatomic segmentectomy and right upper lobectomy. Eur J Cardiothorac Surg. 2012;42:e169–71.CrossRefGoogle Scholar
  25. 25.
    Oh S, Suzuki K, Miyasaka Y, et al. New technique for lung segmentectomy using indocyanine green injection. Ann Thorac Surg. 2013;95:2188–90.CrossRefGoogle Scholar
  26. 26.
    Keating J, Singhal S. Novel methods of intraoperative localization and margin assessment of pulmonary nodules. Semin Thorac Cardiovasc Surg. 2016;28:127–36.CrossRefGoogle Scholar
  27. 27.
    Chan EG, Landreneau JR, Schuchert MJ, et al. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non–small cell lung cancer. J Thorac Cardiovasc Surg. 2015;150:523–8.CrossRefGoogle Scholar
  28. 28.
    Wicky S, Dusmet M, Doenz F, et al. Computed tomography–guided localization of small lung nodules before video-assisted resection: experience with an efficient hook-wire system. J Thorac Cardiovasc Surg. 2002;124:401–3.CrossRefGoogle Scholar
  29. 29.
    Heran MKS, Sangha BS, Mayo JR, et al. Lung nodules in children: video-assisted thoracoscopic surgical resection after computed tomography–guided localization using a microcoil. J Pediatr Surg. 2011;46:1292–7.CrossRefGoogle Scholar
  30. 30.
    Miyoshi T, Kondo K, Takizawa H, et al. Fluoroscopy-assisted thoracoscopic resection of pulmonary nodules after computed tomography–guided bronchoscopic metallic coil marking. J Thorac Cardiovasc Surg. 2006;131:704–10.CrossRefGoogle Scholar
  31. 31.
    Park CH, Hur J, Lee SM, et al. Lipiodol localization for ground-glass opacity minimal surgery: rationale and design of the LOGIS trial. Contemp Clin Trials. 2015;43:194–9.CrossRefGoogle Scholar
  32. 32.
    Nomori H, Horio H, Naruke T, Suemasu K. Fluoroscopy-assisted thoracoscopic resection of lung nodules marked with lipiodol. Ann Thorac Surg. 2002;74:170–3.CrossRefGoogle Scholar
  33. 33.
    Watanabe K, Nomori H, Ohtsuka T, et al. Usefulness and complications of computed tomography-guided lipiodol marking for fluoroscopy-assisted thoracoscopic resection of small pulmonary nodules: experience with 174 nodules. J Thorac Cardiovasc Surg. 2006;132:320–4.CrossRefGoogle Scholar
  34. 34.
    Okumura T, Kondo H, Suzuki K, et al. Fluoroscopy-assisted thoracoscopic surgery after computed tomography-guided bronchoscopic barium marking. Ann Thorac Surg. 2001;71:439–42.CrossRefGoogle Scholar
  35. 35.
    Okada M, Mimura T, Ikegaki J, et al. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thorac Cardiovasc Surg. 2007;133:753–8.CrossRefGoogle Scholar
  36. 36.
    Asano F, Shindoh J, Shigemitsu K, et al. Ultrathin bronchoscopic barium marking with virtual bronchoscopic navigation for fluoroscopy-assisted thoracoscopic surgery. Chest. 2004;126:1687–93.CrossRefGoogle Scholar
  37. 37.
    Bolton WD, Howe H 3rd, Stephenson JE. The utility of electromagnetic navigational bronchoscopy as a localization tool for robotic resection of small pulmonary nodules. Ann Thorac Surg. 2014;98:471–5;discussion 475–476.CrossRefGoogle Scholar
  38. 38.
    Krimsky WS, Minnich DJ, Cattaneo SM, et al. Thoracoscopic detection of occult indeterminate pulmonary nodules using bronchoscopic pleural dye marking. J Community Hosp Intern Med Perspect. 2014;4(1):23084.CrossRefGoogle Scholar
  39. 39.
    Turna A, Solak O, Kilicgun A, et al. Is lobe-specific lymph node dissection appropriate in lung cancer patients undergoing routine mediastinoscopy? Thorac Cardiovasc Surg. 2007;55:112–9.CrossRefGoogle Scholar
  40. 40.
    Finley RJ, Mayo JR, Grant K, et al. Preoperative computed tomography-guided microcoil localization of small peripheral pulmonary nodules: a prospective randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149:26–31.CrossRefGoogle Scholar
  41. 41.
    Paci M, Annessi V, Giovanardi F, et al. Preoperative localization of indeterminate pulmonary nodules before videothoracoscopic resection. Surg Endosc. 2002;16:509–11.CrossRefGoogle Scholar
  42. 42.
    Kanazawa S, Ando A, Yasui K, et al. Localization of pulmonary nodules for thoracoscopic resection: experience with a system using a short hookwire and suture. AJR Am J Roentgenol. 1998;170:332–4.CrossRefGoogle Scholar
  43. 43.
    Gossot D, Miaux Y, Guermazi A, et al. The hook-wire technique for localization of pulmonary nodules during thoracoscopic resection. Chest. 1994;105:1467–9.CrossRefGoogle Scholar
  44. 44.
    Nakashima S, Watanabe A, Obama T, et al. Need for preoperative computed tomography-guided localization in video-assisted thoracoscopic surgery pulmonary resections of metastatic pulmonary nodules. Ann Thorac Surg. 2010;89:212–8.CrossRefGoogle Scholar
  45. 45.
    Dendo S, Kanazawa S, Ando A, et al. Preoperative localization of small pulmonary lesions with a short hook wire and suture system: experience with 168 procedures. Radiology. 2002;225:511–8.CrossRefGoogle Scholar
  46. 46.
    Park CH, Han K, Hur J, et al. Comparative effectiveness and safety of preoperative lung localization for pulmonary nodules: a systematic review and meta-analysis. Chest. 2017;151:316–28.CrossRefGoogle Scholar
  47. 47.
    Mack MJ, Shennib H, Landreneau RJ, Hazelrigg SR. Techniques for localization of pulmonary nodules for thoracoscopic resection. J Thorac Cardiovasc Surg. 1993;106:550–3.PubMedGoogle Scholar
  48. 48.
    Ciriaco P, Negri G, Puglisi A, et al. Video-assisted thoracoscopic surgery for pulmonary nodules: rationale for preoperative computed tomography-guided hookwire localization. Eur J Cardiothorac Surg. 2004;25:429–33.CrossRefGoogle Scholar
  49. 49.
    Miyoshi K, Toyooka S, Gobara H, et al. Clinical outcomes of short hook wire and suture marking system in thoracoscopic resection for pulmonary nodules. Eur J Cardiothorac Surg. 2009;36:378–82.CrossRefGoogle Scholar
  50. 50.
    Hajjar WM, Alnassar S, Almousa O, et al. Thoracoscopic resection of suspected metastatic pulmonary nodules after microcoil localization technique, a prospective study. J Cardiovasc Surg. 2017;58(4):606–12.Google Scholar
  51. 51.
    Galetta D, Bellomi M, Grana C, Spaggiari L. Radio-guided localization and resection of small or ill-defined pulmonary lesions. Ann Thorac Surg. 2015;100:1175–80.CrossRefGoogle Scholar
  52. 52.
    Gonfiotti A, Davini F, Vaggelli L, et al. Thoracoscopic localization techniques for patients with solitary pulmonary nodule: hookwire versus radio-guided surgery. Eur J Cardiothorac Surg. 2007;32:843–7.CrossRefGoogle Scholar
  53. 53.
    Vandoni RE, Cuttat JF, Wicky S, Suter M. CT-guided methylene-blue labelling before thoracoscopic resection of pulmonary nodules. Eur J Cardiothorac Surg. 1998;14:265–70.CrossRefGoogle Scholar
  54. 54.
    Wicky S, Mayor B, Cuttat JF, Schnyder P. CT-guided localizations of pulmonary nodules with methylene blue injections for thoracoscopic resections. Chest. 1994;106:1326–8.CrossRefGoogle Scholar
  55. 55.
    Prosch H, Stadler A, Schilling M, et al. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol. 2012;81:1029–33.CrossRefGoogle Scholar
  56. 56.
    Kim GR, Hur J, Lee SM, et al. CT fluoroscopy-guided lung biopsy versus conventional CT-guided lung biopsy: a prospective controlled study to assess radiation doses and diagnostic performance. Eur Radiol. 2011;21:232–9.CrossRefGoogle Scholar
  57. 57.
    Mahesh M. Fluoroscopy: patient radiation exposure issues. Radiographics. 2001;21:1033–45.CrossRefGoogle Scholar
  58. 58.
    Khereba M, Ferraro P, Duranceau A, et al. Thoracoscopic localization of intraparenchymal pulmonary nodules using direct intracavitary thoracoscopic ultrasonography prevents conversion of VATS procedures to thoracotomy in selected patients. J Thorac Cardiovasc Surg. 2012;144:1160–5.CrossRefGoogle Scholar
  59. 59.
    Iwano S, Yokoi K, Taniguchi T, et al. Planning of segmentectomy using three-dimensional computed tomography angiography with a virtual safety margin: technique and initial experience. Lung Cancer. 2013;81:410–5.CrossRefGoogle Scholar
  60. 60.
    Ikeda N, Yoshimura A, Hagiwara M, et al. Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery. Ann Thorac Cardiovasc Surg. 2013;19:1–5.CrossRefGoogle Scholar
  61. 61.
    Kanzaki M, Kikkawa T, Shimizu T, et al. Presurgical planning using a three-dimensional pulmonary model of the actual anatomy of patient with primary lung cancer. Thorac Cardiovasc Surg. 2013;61:144–50.CrossRefGoogle Scholar
  62. 62.
    Oizumi H, Endoh M, Takeda S, et al. Anatomical lung segmentectomy simulated by computed tomographic angiography. Ann Thorac Surg. 2010;90:1382–3.CrossRefGoogle Scholar
  63. 63.
    Oizumi H, Kanauchi N, Kato H, et al. Anatomic thoracoscopic pulmonary segmentectomy under 3-dimensional multidetector computed tomography simulation: a report of 52 consecutive cases. J Thorac Cardiovasc Surg. 2011;141:678–82.CrossRefGoogle Scholar
  64. 64.
    Nakada T, Akiba T, Inagaki T, Morikawa T. Thoracoscopic anatomical subsegmentectomy of the right S2b + S3 using a 3D printing model with rapid prototyping. Interact Cardiovasc Thorac Surg. 2014;19:696–8.CrossRefGoogle Scholar
  65. 65.
    Onuki T. Virtual reality in video-assisted thoracoscopic lung segmentectomy. Kyobu Geka. 2009;62:733–8.PubMedGoogle Scholar
  66. 66.
    Tsubota N. An improved method for distinguishing the intersegmental plane of the lung. Surg Today. 2000;30:963–4.CrossRefGoogle Scholar
  67. 67.
    Pardolesi A, Veronesi G, Solli P, Spaggiari L. Use of indocyanine green to facilitate intersegmental plane identification during robotic anatomic segmentectomy. J Thorac Cardiovasc Surg. 2014;148:737–8.CrossRefGoogle Scholar
  68. 68.
    Misaki N, Chang SS, Igai H, et al. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg. 2010;140:752–6.CrossRefGoogle Scholar
  69. 69.
    Sekine Y, Ko E, Oishi H, Miwa M. A simple and effective technique for identification of intersegmental planes by infrared thoracoscopy after transbronchial injection of indocyanine green. J Thorac Cardiovasc Surg. 2012;143:1330–5.CrossRefGoogle Scholar
  70. 70.
    Gonzalez-Rivas D. Single incision video-assisted thoracoscopic anatomic segmentectomy. Ann Cardiothorac Surg. 2014;3:204–7.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang BY, Liu CY, Hsu PK, et al. Single-incision versus multiple-incision thoracoscopic lobectomy and segmentectomy: a propensity-matched analysis. Ann Surg. 2015;261:793–9.CrossRefGoogle Scholar
  72. 72.
    Han KN, Kim HK, Choi YH. Comparison of single port versus multiport thoracoscopic segmentectomy. J Thorac Dis. 2016;8:S279–86.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Lin Y, Zheng W, Zhu Y, et al. Comparison of treatment outcomes between single-port video-assisted thoracoscopic anatomic segmentectomy and lobectomy for non-small cell lung cancer of early-stage: a retrospective observational study. J Thorac Dis. 2016;8:1290–6.CrossRefGoogle Scholar
  74. 74.
    Han KN, Kim HK, Lee HJ, Choi YH. Single-port video-assisted thoracoscopic pulmonary segmentectomy: a report on 30 casesdagger. Eur J Cardiothorac Surg. 2016;49(Suppl 1):i42–7.PubMedGoogle Scholar
  75. 75.
    Tamura M, Shimizu Y, Hashizume Y. Pain following thoracoscopic surgery: retrospective analysis between single-incision and three-port video-assisted thoracoscopic surgery. J Cardiothorac Surg. 2013;8:153.CrossRefGoogle Scholar
  76. 76.
    Sihoe AD. Reasons not to perform uniportal VATS lobectomy. J Thorac Dis. 2016;8:S333–43.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Perna V, Carvajal AF, Torrecilla JA, Gigirey O. Uniportal video-assisted thoracoscopic lobectomy versus other video-assisted thoracoscopic lobectomy techniques: a randomized study. Eur J Cardiothorac Surg. 2016;50:411–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Thoracic and Cardiovascular SurgeryKorea University Guro HospitalSeoulRepublic of Korea

Personalised recommendations