Advertisement

Application of Biogeography-Based Optimization in Job Scheduling

  • Yujun Zheng
  • Xueqin Lu
  • Minxia Zhang
  • Shengyong Chen
Chapter

Abstract

Job scheduling problems are a class of combinatorial optimization problems that occur in many areas including production, maintenance, education. In this chapter, we adapt BBO to solve a set of scheduling problems including flow-shop scheduling, job-shop scheduling, maintenance job scheduling, and university course timetabling. The experimental results demonstrate the effectiveness and efficiency of BBO for the problems.

References

  1. 1.
    Alsmadi OMK, Abo-Hammour ZS, Abu-Al-Nadi DI, Algsoon A (2011) A novel genetic algorithm technique for solving university course timetabling problems. In: International workshop on systems, signal processing and their applications, pp 195–198.  https://doi.org/10.1109/WOSSPA.2011.5931449
  2. 2.
    Banharnsakun A, Sirinaovakul B, Achalakul T (2012) Job shop scheduling with the best-so-far abc. Eng Appl Artif Intel 25(3):583–593.  https://doi.org/10.1016/j.engappai.2011.08.003CrossRefGoogle Scholar
  3. 3.
    Carter AE, Ragsdale CT (2006) A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur J Oper Res 175:246–257.  https://doi.org/10.1016/j.ejor.2005.04.027MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang YL, Matsuo H, Sullivan R (1989) A bottleneck-based beam search for job scheduling in a flexible manufacturing system. Int J Prod Res 27:1949–1961.  https://doi.org/10.1080/00207548908942666CrossRefGoogle Scholar
  5. 5.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197.  https://doi.org/10.1109/4235.996017CrossRefGoogle Scholar
  6. 6.
    Didier Dubois HP (1978) Operations on fuzzy numbers. Int J Syst Sci, pp 613–626.  https://doi.org/10.1080/00207727808941724MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fonseca GHG, Santos HG (2014) Variable neighborhood search based algorithms for high school timetabling. Comput Oper Res 52:203–208.  https://doi.org/10.1016/j.cor.2013.11.012MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Framinan J, Gupta J, Leisten R (2004) A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J Oper Res Soc 55:1243–1255.  https://doi.org/10.1057/palgrave.jors.2601784CrossRefzbMATHGoogle Scholar
  9. 9.
    Garey M, Johnson D (1979) Computers and intractability. A guide to the theory of NP-completeness.  https://doi.org/10.2307/2273574CrossRefGoogle Scholar
  10. 10.
    Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper Res 1:117–129.  https://doi.org/10.1287/moor.1.2.117MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ge HW, Sun L, Liang YC, Qian F (2008) An effective pso and ais-based hybrid intelligent algorithm for job-shop scheduling. IEEE Trans Syst Man Cybern B. Cybern 38:358–368.  https://doi.org/10.1109/TSMCA.2007.914753CrossRefGoogle Scholar
  12. 12.
    Goncalves J, Mendes J, Resende M (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95.  https://doi.org/10.1016/j.ejor.2004.03.012MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gupta J, Stafford E (2006) Flowshop scheduling research after five decades. Eur J Oper Res 169:699–711.  https://doi.org/10.1016/j.ejor.2005.02.001CrossRefzbMATHGoogle Scholar
  14. 14.
    Hajek J, Szollos A, Sistek J (2010) A new mechanism for maintaining diversity of pareto archive in multi-objective optimization. Adv Eng Softw 41:1031–1057.  https://doi.org/10.1016/j.advengsoft.2010.03.003CrossRefzbMATHGoogle Scholar
  15. 15.
    Hopcroft JE (1973) An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J Comput 2:122–125.  https://doi.org/10.1137/0202019MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hu J, Mehrotra S (2012) Robust and stochastically weighted multiobjective optimization models and reformulations. Oper Res 60:936–953.  https://doi.org/10.1287/opre.1120.1071MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Knowles J, Watson R, Corne D (2001) Reducing local optima in single-objective problems by multi-objectivization. In: Evolutionary multi-criterion optimization, Lecture Notes in Computer Science, vol 1993, pp 269–283.  https://doi.org/10.1007/3-540-44719-9-19
  18. 18.
    Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as a case study. In: Proceedings of 2nd Annual Conference on Genetic and Evolutionary Computation, pp 987–994Google Scholar
  19. 19.
    Lawler EL, Lenstra JK, Rinnooy Kan AHG (1982) Recent developments in deterministic sequencing and scheduling: A survey. In: Deterministic and stochastic scheduling, pp 35–73.  https://doi.org/10.1007/978-94-009-7801-0-3
  20. 20.
    Lawrence S (1984) Supplement to resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Energy Procedia 4(7):4411–4417Google Scholar
  21. 21.
    Lin TL, Horng SJ, Kao TW, Chen YH, Run RS, Chen RJ, Lai JL, Kuo IH (2010) An efficient job-shop scheduling algorithm based on particle swarm optimization. Expert Syst Appl 37:2629–2636.  https://doi.org/10.1016/j.eswa.2009.08.015CrossRefGoogle Scholar
  22. 22.
    Liu B, Liu Y (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst 10:445–450.  https://doi.org/10.1109/TFUZZ.2002.800692CrossRefGoogle Scholar
  23. 23.
    Liu B, Wang L, Jin YH (2007) An effective pso-based memetic algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern B. Cybern 37(1):18–27.  https://doi.org/10.1109/TSMCB.2006.883272CrossRefGoogle Scholar
  24. 24.
    Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intel 24:517–525.  https://doi.org/10.1016/j.engappai.2010.08.005CrossRefGoogle Scholar
  25. 25.
    Matsatsinis N, Samaras A (2001) Mcda and preference disaggregation in group decision support systems. Eur J Oper Res 130:414–429.  https://doi.org/10.1016/S0377-2217(00)00038-2CrossRefzbMATHGoogle Scholar
  26. 26.
    Michael P (1995) Scheduling: theory, algorithms, and systemsGoogle Scholar
  27. 27.
    Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics, pp 105–144.  https://doi.org/10.1007/0-306-48056-5_5
  28. 28.
    Nawaz M, Enscore EE Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11:91–95.  https://doi.org/10.1016/0305-0483(83)90088-9CrossRefGoogle Scholar
  29. 29.
    Nothegger C, Mayer A, Chwatal A, Raidl GR (2012) Solving the post enrolment course timetabling problem by ant colony optimization. Ann Oper Res 194:325–339.  https://doi.org/10.1007/s10479-012-1078-5MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop problem. Manag Sci 42:797–813.  https://doi.org/10.1287/mnsc.42.6.797CrossRefzbMATHGoogle Scholar
  31. 31.
    Qian B, Wang L, Hu R, Wang WL, Huang DX, Wang X (2008) A hybrid differential evolution method for permutation flow-shop scheduling. Int J Adv Manuf Technol 38(7–8):757–777.  https://doi.org/10.1007/s00170-007-1115-8CrossRefGoogle Scholar
  32. 32.
    Reeves CR, Yamada T (1998) Genetic algorithms, path relinking, and the flowshop sequencing problem. Evol Comput 6(1):45–60.  https://doi.org/10.1162/evco.1998.6.1.45CrossRefGoogle Scholar
  33. 33.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713.  https://doi.org/10.1109/TEVC.2008.919004CrossRefGoogle Scholar
  34. 34.
    Sniedovich M (2012) Black swans, new nostradamuses, voodoo decision theories, and the science of decision making in the face of severe uncertainty. Int Trans Oper Res 19:253–281.  https://doi.org/10.1111/j.1475-3995.2010.00790.xMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Spanos AC, Ponis ST, Tatsiopoulos IP, Christou IT, Rokou E (2014) A new hybrid parallel genetic algorithm for the job-shop scheduling problem. Int Trans Oper Res 21:479–499.  https://doi.org/10.1111/itor.12056MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Storer RH, Wu SD, Vaccari R (1992) New search spaces for sequencing problems with application to job shop scheduling. Manag Sci 38(10):1495–1509.  https://doi.org/10.1287/mnsc.38.10.1495CrossRefzbMATHGoogle Scholar
  37. 37.
    Tassopoulos IX, Beligiannis GN (2012) A hybrid particle swarm optimization based algorithm for high school timetabling problems. Appl Soft Comput 12:3472–3489.  https://doi.org/10.1016/j.asoc.2012.05.029CrossRefGoogle Scholar
  38. 38.
    Yin M, Li X (2011) A hybrid bio-geography based optimization for permutation flow shop scheduling. Sci Res Essays 6.  https://doi.org/10.5897/SRE10.818CrossRefGoogle Scholar
  39. 39.
    Zhang MX, Zhang B, Qian N (2017) University course timetabling using a new ecogeography-based optimization algorithm. Nat Comput 16(1):61–74.  https://doi.org/10.1007/s11047-016-9543-8MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zheng Y, Shi H, Chen S (2012) Fuzzy combinatorial optimization with multiple ranking criteria: a staged tabu search framework. Pac J Optim 8:457–472MathSciNetzbMATHGoogle Scholar
  41. 41.
    Zheng Y, Chen S, Ling H (2013) Efficient multi-objective tabu search for emergency equipment maintenance scheduling in disaster rescue. Opt Lett 7:89–100.  https://doi.org/10.1007/s11590-011-0397-9MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zheng YJ, Ling HF, Wu XB, Xue JY (2014) Localized biogeography-based optimization. Soft Comput 18:2323–2334.  https://doi.org/10.1007/s00500-013-1209-1CrossRefGoogle Scholar
  43. 43.
    Zheng YJ, Ling HF, Xue JY (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 50:115–127.  https://doi.org/10.1016/j.cor.2014.04.013CrossRefzbMATHGoogle Scholar
  44. 44.
    Zheng YJ, Ling HF, Xu XL, Chen SY (2015) Emergency scheduling of engineering rescue tasks in disaster relief operations and its application in china. Int Trans Oper Res 22:503–518.  https://doi.org/10.1111/itor.12148MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019

Authors and Affiliations

  • Yujun Zheng
    • 1
  • Xueqin Lu
    • 2
  • Minxia Zhang
    • 2
  • Shengyong Chen
    • 2
  1. 1.Hangzhou Institute of Service EngineeringHangzhou Normal UniversityHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations